A MULTIMODAL LEARNING FRAMEWORK TO STUDY VARYING INFORMATION COMPLEXITY IN STRUCTURAL AND FUNCTIONAL SUB-DOMAINS IN SCHIZOPHRENIA

被引:1
作者
Batta, Ishaan [1 ,2 ]
Abrol, Anees [1 ]
Fu, Zening [1 ]
Calhoun, Vince [1 ,2 ]
机构
[1] Ctr Translat Res Neuroimaging & Data Sci TReNDS G, Atlanta, GA 30303 USA
[2] Georgia Inst Technol, Dept Elect & Comp Engn, Atlanta, GA 30332 USA
来源
2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2021年
基金
美国国家卫生研究院;
关键词
Multimodal Learning; Schizophrenia; fMRI; MRI; Functional Connectivity; resting-state; Sub-domain Analysis; MLP; Bayesian Optimization; Hyperparameter Optimization; NETWORKS;
D O I
10.1109/ISBI48211.2021.9434152
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Approaches involving the use of learning architectures on multimodal neuroimaging data tend to assume uniformity in the way information is stored in various sub-domains of the brain, thus not catering to the differences across functional and structural sub-domains. We introduce a learning framework to effectively incorporate multimodal features using structural and functional MRI data from a dataset of schizophrenia patients and controls, accounting for and exploiting the heterogeneity in the sub-domains of the brain. We analyze these sub-domains in terms of their functional interactions (i.e. within and between network connectivity) and structural properties (gray matter volume). By using Bayesian optimization on a search space of flexible multimodal architectures with multiple branches, we demonstrate that the discriminatory information from structural and functional sub-domains can be better recovered if the complexity of subspace structure in the model can be tuned to reflect the extent of non-linearity with which each sub-domain encodes the information. Our repeated cross-validated results from a schizophrenia classification problem show that for better classification and interpretation, sub-domains known for their role or disruption in Schizophrenia require more sophisticated subspace structure in the model compared to others. Our work emphasizes on the requirement to create multimodal frameworks that can adapt based on differences in the way various sub-domains of the brain encode discriminatory information. This is important to not only have better-performing prediction models but also to reveal sub-domains associated with the outcome at hand.
引用
收藏
页码:994 / 998
页数:5
相关论文
共 18 条
[1]  
Bergstra J., 2011, Advances in Neural Information Processing Systems
[2]  
Calhoun Vince D, 2016, Biol Psychiatry Cogn Neurosci Neuroimaging, V1, P230
[3]   Functional brain networks in schizophrenia: a review [J].
Calhoun, Vince D. ;
Eichele, Tom ;
Pearlson, Godfrey .
FRONTIERS IN HUMAN NEUROSCIENCE, 2009, 3
[4]   Group information guided ICA for fMRI data analysis [J].
Du, Yuhui ;
Fan, Yong .
NEUROIMAGE, 2013, 69 :157-197
[5]  
Han S., 2017, APPL INFORM BERL, V4, P16, DOI DOI 10.1186/S40535-017-0044-3
[6]   Sensory Processing Dysfunction in the Personal Experience and Neuronal Machinery of Schizophrenia [J].
Javitt, Daniel C. ;
Freedman, Robert .
AMERICAN JOURNAL OF PSYCHIATRY, 2015, 172 (01) :17-31
[7]   Disintegration of Sensorimotor Brain Networks in Schizophrenia [J].
Kaufmann, Tobias ;
Skatun, Kristina C. ;
Alnaes, Dag ;
Nhat Trung Doan ;
Duff, Eugene P. ;
Tonnesen, Siren ;
Roussos, Evangelos ;
Ueland, Torill ;
Aminoff, Sofie R. ;
Lagerberg, Trine V. ;
Agartz, Ingrid ;
Melle, Ingrid S. ;
Smith, Stephen M. ;
Andreassen, Ole A. ;
Westlye, Lars T. .
SCHIZOPHRENIA BULLETIN, 2015, 41 (06) :1326-1335
[8]   The Function Biomedical Informatics Research Network Data Repository [J].
Keator, David B. ;
van Erp, Theo G. M. ;
Turner, Jessica A. ;
Glover, Gary H. ;
Mueller, Bryon A. ;
Liu, Thomas T. ;
Voyvodic, James T. ;
Rasmussen, Jerod ;
Calhoun, Vince D. ;
Lee, Hyo Jong ;
Toga, Arthur W. ;
McEwen, Sarah ;
Ford, Judith M. ;
Mathalon, Daniel H. ;
Diaz, Michele ;
O'Leary, Daniel S. ;
Bockholt, H. Jeremy ;
Gadde, Syam ;
Preda, Adrian ;
Wible, Cynthia G. ;
Stern, Hal S. ;
Belger, Aysenil ;
McCarthy, Gregory ;
Ozyurt, Burak ;
Potkin, Steven G. .
NEUROIMAGE, 2016, 124 :1074-1079
[9]   A review on neural network models of schizophrenia and autism spectrum disorder [J].
Lanillos, Pablo ;
Oliva, Daniel ;
Philippsen, Anja ;
Yamashita, Yuichi ;
Nagai, Yukie ;
Cheng, Gordon .
NEURAL NETWORKS, 2020, 122 :338-363
[10]   Machine learning in mental health: a scoping review of methods and applications [J].
Shatte, Adrian B. R. ;
Hutchinson, Delyse M. ;
Teague, Samantha J. .
PSYCHOLOGICAL MEDICINE, 2019, 49 (09) :1426-1448