Large deviations for geodesic random walks

被引:0
作者
Versendaal, Rik [1 ]
机构
[1] Delft Univ Technol, Delft, Netherlands
关键词
large deviations; Cramer's theorem; geodesic random walks; Riemannian exponential map; Jacobi fields; spreading of geodesics;
D O I
10.1214/19-EJP351
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide a direct proof of Cramer's theorem for geodesic random walks in a complete Riemannian manifold (M, g). We show how to exploit the vector space structure of the tangent spaces to study large deviation properties of geodesic random walks in M. Furthermore, we reveal the geometric obstructions one runs into. To overcome these obstructions, we provide a Taylor expansion of the inverse Riemannian exponential map, together with appropriate bounds. Furthermore, we compare the differential of the Riemannian exponential map to parallel transport. Finally, we show how far geodesics, possibly starting in different points, may spread in a given amount of time. With all geometric results in place, we obtain the analogue of Cramer's theorem for geodesic random walks by showing that the curvature terms arising in this geometric analysis can be controlled and are negligible on an exponential scale.
引用
收藏
页数:39
相关论文
共 13 条
[1]  
[Anonymous], 1970, Princeton Mathematical Series
[2]  
[Anonymous], 2006, Mathematical surveys and monographs
[3]  
[Anonymous], 2000, FIELDS I MONOGRAPHS, DOI DOI 10.1007/S00440-009-0235-5
[4]  
Dembo A., 1998, APPL MATH, DOI 10.1007/978-1-4612-5320-4
[5]  
Deuschel J.-D., 1989, PURE APPL MATH, V137
[6]  
Frankel Theodore, 2004, GEOMETRY PHYS
[7]   CENTRAL LIMIT PROBLEM FOR GEODESIC RANDOM-WALKS [J].
JORGENSEN, E .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1975, 32 (1-2) :1-64
[8]  
Klingenberg W., 1982, DEGRUYTER STUDIES MA, V1
[9]  
Kraaij Richard, 2018, CLASSICAL LARGE DEVI
[10]  
Lee J. M., 1997, GRADUATE TEXTS MATH, V176