High-order symplectic integration: an assessment

被引:89
作者
Schlier, C [1 ]
Seiter, A [1 ]
机构
[1] Univ Freiburg, Fak Phys, D-79104 Freiburg, Germany
关键词
ordinary differential equations; numerical integration; Hamiltonian systems; symplectic dynamics; classical trajectories;
D O I
10.1016/S0010-4655(00)00011-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We report tests of some new symplectic integration routines of sixth and eighth order applied to the integration of classical trajectories for a triatomic model molecule. This system has mixed regular and chaotic phase space. Especially for long-lived trajectories, which are trapped in the stochastic layers of the phase space, the eighth-order integrators are very powerful. Among a great number of integrating routines tested by the authors they are the most efficient ones, i.e. they need the smallest computational expense at a prescribed accuracy level. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:176 / 189
页数:14
相关论文
共 19 条
[1]  
BENNETIN G, 1979, 2 NUOVO CIMENTO B, V50, P211
[2]  
BENNETIN G, 1978, 2 NUOVO CIMENTO B, V44, P183
[3]   ON THE EFFECTS OF AN UNCERTAINTY ON THE EVOLUTION LAW IN DYNAMICAL-SYSTEMS [J].
CRISANTI, A ;
FALCIONI, M ;
VULPIANI, A .
PHYSICA A, 1989, 160 (03) :482-502
[4]  
Gear C. W., 1965, SIAM J Numer Anal, V2, P69
[5]   SHADOWING, RARE EVENTS, AND RUBBER BANDS - A VARIATIONAL VERLET ALGORITHM FOR MOLECULAR-DYNAMICS [J].
GILLILAN, RE ;
WILSON, KR .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (03) :1757-1772
[6]   SYMPLECTIC INTEGRATORS FOR LARGE-SCALE MOLECULAR-DYNAMICS SIMULATIONS - A COMPARISON OF SEVERAL EXPLICIT METHODS [J].
GRAY, SK ;
NOID, DW ;
SUMPTER, BG .
JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (05) :4062-4072
[7]   SHADOWING OF PHYSICAL TRAJECTORIES IN CHAOTIC DYNAMICS - CONTAINMENT AND REFINEMENT [J].
GREBOGI, C ;
HAMMEL, SM ;
YORKE, JA ;
SAUER, T .
PHYSICAL REVIEW LETTERS, 1990, 65 (13) :1527-1530
[8]   Symplectic integrator for molecular dynamics of a protein in water [J].
Ishida, H ;
Nagai, Y ;
Kidera, A .
CHEMICAL PHYSICS LETTERS, 1998, 282 (02) :115-120
[9]   COMPUTABLE CHAOTIC ORBITS [J].
MCCAULEY, JL ;
PALMORE, JI .
PHYSICS LETTERS A, 1986, 115 (09) :433-436
[10]   ON THE NUMERICAL-INTEGRATION OF ORDINARY DIFFERENTIAL-EQUATIONS BY SYMMETRICAL COMPOSITION METHODS [J].
MCLACHLAN, RI .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (01) :151-168