Day-ahead Chance-constrained Energy Management of Energy Hubs: A Distributionally Robust Approach

被引:16
作者
Cao, Jiaxin [1 ,2 ]
Yang, Bo [1 ,2 ]
Zhu, Shanying [1 ,2 ]
Ning, Chao [3 ]
Guan, Xinping [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
[2] Minist Educ China, Key Lab Syst Control & Informat Proc, Shanghai, Peoples R China
[3] Cornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
关键词
Chance constraint; distributionally robust optimization; energy hub; energy management; OPTIMAL POWER-FLOW; STORAGE-SYSTEM; INTEGRATION;
D O I
10.17775/CSEEJPES.2020.04380
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The day-ahead management schedules of hybrid energy hubs are intricate and usually exposed to various uncertainties with the penetration of renewable sources and different demands. Furthermore, it is difficult to access to precise probability distribution functions and exact moment information of uncertain variables. To cope with these issues, an energy management scheme based on the distributionally robust optimization approach is developed for the energy hub. It makes no assumptions of certain probability distributions and can be implemented with limited empirical data and partial information of underlying uncertainties. The operational strategy can provide decision makers with a preliminary and robust optimal solution in the day-ahead market. Numerical results illustrate the economical benefit of the energy model, and the effectiveness of the proposed approach in chance-constrained energy management is demonstrated by comparing with other cases.
引用
收藏
页码:812 / 825
页数:14
相关论文
共 47 条
[11]   Energy hubs for the future [J].
Geidl, Martin ;
Koeppel, Gaudenz ;
Favre-Perrod, Patrick ;
Kloeckl, Bernd ;
Andersson, Goran ;
Froehlich, Klaus .
IEEE POWER & ENERGY MAGAZINE, 2007, 5 (01) :24-30
[12]   Day-Ahead Hourly Forecasting of Power Generation From Photovoltaic Plants [J].
Gigoni, Lorenzo ;
Betti, Alessandro ;
Crisostomi, Emanuele ;
Franco, Alessandro ;
Tucci, Mauro ;
Bizzarri, Fabrizio ;
Mucci, Debora .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2018, 9 (02) :831-842
[13]   Islanding-Aware Robust Energy Management for Microgrids [J].
Guo, Yuanxiong ;
Zhao, Chaoyue .
IEEE TRANSACTIONS ON SMART GRID, 2018, 9 (02) :1301-1309
[14]   A distributionally robust perspective on uncertainty quantification and chance constrained programming [J].
Hanasusanto, Grani A. ;
Roitch, Vladimir ;
Kuhn, Daniel ;
Wiesemann, Wolfram .
MATHEMATICAL PROGRAMMING, 2015, 151 (01) :35-62
[15]   Stochastic effects of ice storage on improvement of an energy hub optimal operation including demand response and renewable energies [J].
Heidari, A. ;
Mortazavi, S. S. ;
Bansal, R. C. .
APPLIED ENERGY, 2020, 261
[16]   Distributionally Robust Optimal Power Flow in Multi-Microgrids With Decomposition and Guaranteed Convergence [J].
Huang, Wanjun ;
Zheng, Weiye ;
Hill, David J. .
IEEE TRANSACTIONS ON SMART GRID, 2021, 12 (01) :43-55
[17]   Distributionally Robust CVaR Constraints for Power Flow Optimization [J].
Jabr, Rabih A. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (05) :3764-3773
[18]   Optimal Operation of Energy Hubs Considering Uncertainties and Different Time Resolutions [J].
Javadi, Mohammad Sadegh ;
Lotfi, Mohamed ;
Nezhad, Ali Esmaeel ;
Anvari-Moghaddam, Amjad ;
Guerrero, Josep M. ;
Catalao, Joao P. S. .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2020, 56 (05) :5543-5552
[19]   Combined Nonparametric Prediction Intervals for Wind Power Generation [J].
Khosravi, Abbas ;
Nahavandi, Saeid .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2013, 4 (04) :849-856
[20]  
Li B., 2017, 2017 IEEE MANCHESTER, P1