Advanced technology for fabrication of reaction-bonded SiC with controlled composition and properties

被引:37
作者
Grinchuk, P. S. [1 ]
Kiyashko, M. V. [1 ]
Abuhimd, H. M. [2 ]
Alshahrani, M. S. [2 ]
Solovei, D. V. [1 ]
Stepkin, M. O. [1 ]
Akulich, A. V. [1 ]
Shashkov, M. D. [1 ]
Kuznetsova, T. A. [1 ]
Danilova-Tretiak, S. M. [1 ]
Evseeva, L. E. [1 ]
Nikolaeva, K. V. [1 ]
机构
[1] Natl Acad Sci Belarus, AV Luikov Heat & Mass Transfer Inst, P Brovki 15, Minsk 220072, BELARUS
[2] King Abdulaziz City Sci & Technol Riyadh, Natl Nanotechnol Res Ctr, POB 6086, Riyadh 11442, Saudi Arabia
关键词
Silicon carbide; Phenolic resin; C; SiC Composite; Reaction bonding; Silicon infiltration; PRESSED SILICON-CARBIDE; PHENOLIC RESIN; THERMAL-EXPANSION; CERAMICS; GRAPHITE; SPECTROSCOPY; TEMPERATURE; PERFORMANCE; OXIDATION; DISORDER;
D O I
10.1016/j.jeurceramsoc.2021.05.017
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
An advanced fabrication technology of reaction-bonded SiC is developed, which includes the preparation of a C/ SiC preform by repeated cycles of phenolic resin impregnation and pyrolysis, followed by infiltration with silicon melt. The use of different number of impregnation stages provides control of carbon content in the preform and the corresponding SiC content in final ceramics. The effect of the impregnation number on the preform characteristics and ceramics composition, thermal and mechanical properties are investigated comprehensively. With an increase of impregnation number up to four, SiC fraction in the ceramics enlarges to 93 vol%, thermal conductivity and Young's modulus increase to 186 W/(m.K) and 427 GPa respectively, which are superior to most reaction-bonded SiC. Flexural strength (225 MPa) and thermal expansion coefficient (2.10-6 K-1) are not dependent on the impregnation number. The obtained results provide an opportunity to design and fabricate reaction-bonded SiC ceramics with a given set of properties.
引用
收藏
页码:5813 / 5824
页数:12
相关论文
共 58 条
  • [1] Durability of carbon nanofiber (CNF) & carbon nanotube (CNT) as catalyst support for Proton Exchange Membrane Fuel Cells
    Andersen, Shuang Ma
    Borghei, Maryam
    Lund, Peter
    Elina, Yli-Rantala
    Pasanen, Antti
    Kauppinen, Esko
    Ruiz, Virginia
    Kauranen, Pertti
    Skou, Eivind M.
    [J]. SOLID STATE IONICS, 2013, 231 : 94 - 101
  • [2] Oxidation behavior at moderate temperature under dry and wet air of phenolic resin-derived carbon
    Bertran, X.
    Chollon, G.
    Dentzer, J.
    Gadiou, R.
    Fouquet, S.
    Dourges, M-A
    Rebillat, F.
    [J]. THERMOCHIMICA ACTA, 2017, 649 : 13 - 21
  • [3] Bougoin M, 2017, Proc of SPIE, V10562
  • [4] The combined effect of porosity and reactivity of the carbon preforms on the properties of SiC produced by reactive infiltration with liquid Si
    Calderon, N. R.
    Martinez-Escandell, M.
    Narciso, J.
    Rodriguez-Reinoso, F.
    [J]. CARBON, 2009, 47 (09) : 2200 - 2210
  • [5] Strong optical nonlinearity of the nonstoichiometric silicon carbide
    Cheng, Chih-Hsien
    Wu, Chung-Lun
    Lin, Yung-Hsiang
    Yan, Wen-Long
    Shih, Min-Hsiung
    Chang, Jung-Hung
    Wu, Chih-I
    Lee, Chao-Kuei
    Lin, Gong-Ru
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (39) : 10164 - 10176
  • [6] Chinn Richard E., 2016, Metal Powder Report, V71, P460, DOI 10.1016/j.mprp.2016.02.048
  • [7] Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects
    Ferrari, Andrea C.
    [J]. SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) : 47 - 57
  • [8] Fraga MA., 2015, Advanced Silicon Carbide Devices and Processing, P1, DOI [10.5772/60970, DOI 10.5772/60970]
  • [9] Goela JS, 2006, HIGH THERMAL CONDUCTIVITY MATERIALS, P167, DOI 10.1007/0-387-25100-6_6
  • [10] Grimvall G, 1999, Thermophysical Properties of MaterialsM