A Receding Horizon Approach for Simultaneous Active Learning and Control using Gaussian Processes

被引:1
|
作者
Le, Viet-Anh [1 ]
Nghiem, Truong X. [1 ]
机构
[1] No Arizona Univ, Sch Informat Comp & Cyber Syst, Flagstaff, AZ 86011 USA
来源
5TH IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (IEEE CCTA 2021) | 2021年
关键词
D O I
10.1109/CCTA48906.2021.9659046
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a receding horizon active learning and control problem for dynamical systems in which Gaussian processes (GPs) are utilized to model the system dynamics. The active learning objective in the optimization problem is presented by the exact conditional differential entropy of GP predictions at multiple steps ahead, which is equivalent to the log determinant of the GP posterior covariance matrix. The resulting non-convex and complex optimization problem is solved by the sequential convex programming algorithm that exploits the first-order approximations of non-convex functions. Simulation results of an autonomous car example verify that using the proposed method can significantly improve data quality for model learning.
引用
收藏
页码:453 / 458
页数:6
相关论文
共 50 条
  • [31] Approximate receding horizon approach for Markov decision processes: average reward case
    Chang, HS
    Marcus, SI
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 286 (02) : 636 - 651
  • [32] A Receding Horizon Approach to String Stable Cooperative Adaptive Cruise Control
    Kianfar, Roozbeh
    Falcone, Paolo
    Fredriksson, Jonas
    2011 14TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2011, : 734 - 739
  • [33] NUMERICAL COMPUTATION OF RECEDING HORIZON CONTROL USING DAVISONS METHOD
    QUINTANA, VH
    FUENZALIDA, RE
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (03) : 423 - 424
  • [34] A Receding-Horizon Approach for Active and Reactive Power Flows Optimization in Microgrids
    Bonfiglio, A.
    Bracco, S.
    Brignone, M.
    Delfino, F.
    Pampararo, F.
    Procopio, R.
    Robba, M.
    Rossi, M.
    2014 IEEE CONFERENCE ON CONTROL APPLICATIONS (CCA), 2014, : 867 - 872
  • [35] Adding a Receding Horizon to Locally Weighted Regression for Learning Robot Control
    Lehnert, Christopher
    Wyeth, Gordon
    2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2011, : 692 - 697
  • [36] Receding Horizon Reinforcement Learning Algorithm for Lateral Control of Intelligent Vehicles
    Zhang, Xing-Long
    Lu, Yang
    Li, Wen-Zhang
    Xu, Xin
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (12): : 2482 - 2492
  • [37] Decentralized Receding Horizon Control Using Communication Bandwidth Allocation
    Izadi, H. A.
    Gordon, B. W.
    Rabbath, C. A.
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 5256 - 5261
  • [38] An active set solver for input-constrained robust receding horizon control
    Buerger, Johannes
    Cannon, Mark
    Kouvaritakis, Basil
    AUTOMATICA, 2014, 50 (01) : 155 - 161
  • [39] On-line Optimal Control: A Receding Horizon Approach via BPFs
    Aousgi, Ines Sansa
    Elloumi, Salwa
    Braiek, Naceur Benhadj
    2015 7TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC), 2014, : 472 - 475
  • [40] Efficient Sparse Approach for Solving Receding-Horizon Control Problems
    Peng, Haijun
    Gao, Qiang
    Wu, Zhigang
    Zhong, Wanxie
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2013, 36 (06) : 1875 - 1883