Bias-compensated identification of quadratic Volterra system with noisy input and output

被引:4
|
作者
Kim, J. H. [1 ]
Nam, S. W. [1 ]
机构
[1] Hanyang Univ, Dept Elect & Commun Engn, Seoul 133791, South Korea
关键词
ALGORITHMS;
D O I
10.1049/el.2010.3164
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An iterative approach to identification of a quadratic Volterra system with noisy input-output is proposed, whereby the bias-compensated least-squares method of identifying a noisy FIR model is utilised with some modi. cation to estimate input/output noise variances and bias-removed Volterra system parameters. In particular, the proposed identification approach yields better performance even in cases of fewer input/output data than conventional methods, and it can be also extended to identification of noisy higher-order Volterra systems.
引用
收藏
页码:448 / U96
页数:2
相关论文
共 50 条
  • [31] Stabilization of a Bias-Compensated Normalized Least-Mean-Square Algorithm for Noisy Inputs
    Jung, Sang Mok
    Park, PooGyeon
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (11) : 2949 - 2961
  • [32] Bias-Compensated Sign Algorithm for Noisy Inputs and Its Step-Size Optimization
    Ni, Jingen
    Gao, Ye
    Chen, Xu
    Chen, Jie
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 2330 - 2342
  • [33] A bias-compensated fractional order normalized least mean square algorithm with noisy inputs
    Yin, Weidi
    Cheng, Songsong
    Wei, Yiheng
    Shuai, Jianmei
    Wang, Yong
    NUMERICAL ALGORITHMS, 2019, 82 (01) : 201 - 222
  • [34] Widely Linear Complex-Valued Estimated-Input LMS Algorithm for Bias-Compensated Adaptive Filtering With Noisy Measurements
    Zhang, Sheng
    Zhang, Jiashu
    Zheng, Wei Xing
    So, Hing Cheung
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (13) : 3592 - 3605
  • [35] ON FIR SYSTEM IDENTIFICATION FROM NOISY INPUT AND OUTPUT DATA
    Zheng, Wei Xing
    ICSP: 2008 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-5, PROCEEDINGS, 2008, : 112 - 115
  • [36] Blind adaptive identification and equalization using bias-compensated NLMS methods
    Zhen Zhang
    Lijuan Jia
    Ran Tao
    Yue Wang
    Science China Information Sciences, 2022, 65
  • [37] Blind adaptive identification and equalization using bias-compensated NLMS methods
    Zhen ZHANG
    Lijuan JIA
    Ran TAO
    Yue WANG
    ScienceChina(InformationSciences), 2022, 65 (05) : 184 - 195
  • [38] Blind adaptive identification and equalization using bias-compensated NLMS methods
    Zhang, Zhen
    Jia, Lijuan
    Tao, Ran
    Wang, Yue
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (05)
  • [39] Optimal regularization for system identification from noisy input and output signals
    Xin, JM
    Ohmori, H
    Sano, A
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1995, E78A (12) : 1805 - 1815
  • [40] Bias-compensated robust set-membership NLMS algorithm against impulsive noises and noisy inputs
    Zheng, Zongsheng
    Liu, Zhigang
    Lu, Lu
    ELECTRONICS LETTERS, 2017, 53 (16) : 1100 - 1101