Honeycomb Boron Carbon Nitride as High-Performance Anode Material for Li-Ion Batteries

被引:9
|
作者
Karbhal, Indrapal [1 ,2 ]
Chaturvedi, Vikash [1 ,2 ]
Patrike, Apurva [1 ,2 ]
Yadav, Poonam [1 ,2 ]
Shelke, Manjusha, V [1 ,2 ]
机构
[1] CSIR Natl Chem Lab, Phys & Mat Chem Div, Pune 411008, MH, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, UP, India
关键词
Honeycomb boron carbon nitride (HBCN); 3D-Architecture; Heteroatom Doping; High-Performance Anode; Li-ion battery; DOPED GRAPHENE; HYDROTHERMAL SYNTHESIS; OXYGEN REDUCTION; DIFFUSION-COEFFICIENT; ELECTRODE MATERIAL; LITHIUM STORAGE; RECENT PROGRESS; ENERGY-STORAGE; POROUS CARBON; QUANTUM DOTS;
D O I
10.1002/cnma.202200056
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
3D Porous carbon-based materials are well known for their excellent mechanical and electrochemical properties for various energy storage applications including Li-ion Battery (LIB) anodes. However, their commercial application is limited due to their low theoretical specific capacity. Heteroatom doping in carbonaceous networks proved an efficient way to modify the surface properties, which considerably improves the Li intake capacity and Li diffusion in porous carbon materials. In this work, we have synthesized 3D honeycomb boron carbon nitride (HBCN) from boric acid, glucose, and cyanamide. Silica nanoparticles (SiO2 NPs) are used as structure-directing agents to replicate well-organized honeycomb structures. HBCN possesses a high specific surface area (SSA) of similar to 597 m(2) g(-1), with a uniform porosity distribution, low charge transfer resistance, and steady Li flux. When analyzed as an anode material for LIB, HBCN demonstrated an excellent specific capacity of similar to 652 mAhg(-1) and 408 mAhg(-1) at an input current density of 100 mAg(-1) and 1 Ag-1 respectively and an energy density of 227 Wh kg(-1) at 1 C rate in a full cell LIB. These results indicate that the doping of B and N hetero atoms is significantly advantageous for LIBs application.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries
    Wang, Gang
    Xiong, Xunhui
    Xie, Dong
    Lin, Zhihua
    Zheng, Jie
    Zheng, Fenghua
    Li, Youpeng
    Liu, Yanzhen
    Yang, Chenghao
    Liu, Meilin
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (47) : 24317 - 24323
  • [32] Enhancing the performance of BN nanosheets as promising anode material for Li-ion batteries with carbon-doping
    Tyagi, Neha
    Jaiswal, Neeraj K.
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2022, 115
  • [33] A honeycomb-like nitrogen-doped carbon as high-performance anode for potassium-ion batteries
    Li, Junpeng
    Li, Yijuan
    Ma, Xiangdong
    Zhang, Kun
    Hu, Junhua
    Yang, Chenghao
    Liu, Meilin
    CHEMICAL ENGINEERING JOURNAL, 2020, 384 (384)
  • [34] Electrochemical Activation of Carbon-Coated SiO2 Anode Materials for High-Performance Li-Ion Batteries
    Dong, Xue
    Woo, Chaeheon
    Oh, Seungbae
    Kim, Yeongjin
    Zhang, Xiaojie
    Choi, Kyung Hwan
    Kang, Jinsu
    Bang, Hyeon-Seok
    Jeon, Jiho
    Oh, Hyung-Suk
    Kim, Dongju
    Yu, Hak Ki
    Mun, Junyoung
    Choi, Jae-Young
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (17): : 7478 - 7484
  • [35] Sustainable Recycling of Cathode Scrap towards High-Performance Anode Materials for Li-Ion Batteries
    Lin, Jiao
    Fan, Ersha
    Zhang, Xiaodong
    Chen, Renjie
    Wu, Feng
    Li, Li
    ADVANCED ENERGY MATERIALS, 2022, 12 (02)
  • [36] A nanoengineered vanadium oxide composite as a high-performance anode for aqueous Li-ion hybrid batteries
    Huang, Ailun
    Yang, Zhiyin
    Chang, Xueying
    Lin, Cheng-Wei
    Kaner, Richard B.
    NANOSCALE HORIZONS, 2024, 9 (08) : 1279 - 1289
  • [37] Local Electric Field Facilitates High-Performance Li-Ion Batteries
    Liu, Youwen
    Zhou, Tengfei
    Zheng, Yang
    He, Zhihai
    Xiao, Chong
    Pang, Wei Kong
    Tong, Wei
    Zou, Youming
    Pan, Bicai
    Guo, Zaiping
    Xie, Yi
    ACS NANO, 2017, 11 (08) : 8519 - 8526
  • [38] Search for New Anode Materials for High Performance Li-Ion Batteries
    Roy, Kingshuk
    Banerjee, Abhik
    Ogale, Satishchandra
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (18) : 20326 - 20348
  • [39] A high-performance Li-ion anode from direct deposition of Si nanoparticles
    Xu, Yaolin
    Swaans, Ellie
    Chen, Sibo
    Basak, Shibabrata
    Harks, Peter Paul R. M. L.
    Peng, Bo
    Zandbergen, Henny W.
    Borsa, Dana M.
    Mulder, Fokko M.
    NANO ENERGY, 2017, 38 : 477 - 485
  • [40] A benign strategy toward mesoporous carbon coated Sb nanoparticles: A high-performance Li-ion/Na-ion batteries anode
    Dashairya, Love
    Chaturvedi, Vikash
    Kumar, Abhishek
    Mohanta, Tandra Rani
    Shelke, Manjusha
    Saha, Partha
    SOLID STATE IONICS, 2023, 396