Honeycomb Boron Carbon Nitride as High-Performance Anode Material for Li-Ion Batteries

被引:9
|
作者
Karbhal, Indrapal [1 ,2 ]
Chaturvedi, Vikash [1 ,2 ]
Patrike, Apurva [1 ,2 ]
Yadav, Poonam [1 ,2 ]
Shelke, Manjusha, V [1 ,2 ]
机构
[1] CSIR Natl Chem Lab, Phys & Mat Chem Div, Pune 411008, MH, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, UP, India
关键词
Honeycomb boron carbon nitride (HBCN); 3D-Architecture; Heteroatom Doping; High-Performance Anode; Li-ion battery; DOPED GRAPHENE; HYDROTHERMAL SYNTHESIS; OXYGEN REDUCTION; DIFFUSION-COEFFICIENT; ELECTRODE MATERIAL; LITHIUM STORAGE; RECENT PROGRESS; ENERGY-STORAGE; POROUS CARBON; QUANTUM DOTS;
D O I
10.1002/cnma.202200056
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
3D Porous carbon-based materials are well known for their excellent mechanical and electrochemical properties for various energy storage applications including Li-ion Battery (LIB) anodes. However, their commercial application is limited due to their low theoretical specific capacity. Heteroatom doping in carbonaceous networks proved an efficient way to modify the surface properties, which considerably improves the Li intake capacity and Li diffusion in porous carbon materials. In this work, we have synthesized 3D honeycomb boron carbon nitride (HBCN) from boric acid, glucose, and cyanamide. Silica nanoparticles (SiO2 NPs) are used as structure-directing agents to replicate well-organized honeycomb structures. HBCN possesses a high specific surface area (SSA) of similar to 597 m(2) g(-1), with a uniform porosity distribution, low charge transfer resistance, and steady Li flux. When analyzed as an anode material for LIB, HBCN demonstrated an excellent specific capacity of similar to 652 mAhg(-1) and 408 mAhg(-1) at an input current density of 100 mAg(-1) and 1 Ag-1 respectively and an energy density of 227 Wh kg(-1) at 1 C rate in a full cell LIB. These results indicate that the doping of B and N hetero atoms is significantly advantageous for LIBs application.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Colloidal Antimony Sulfide Nanoparticles as a High-Performance Anode Material for Li-ion and Na-ion Batteries
    Kravchyk, Kostiantyn, V
    Kovalenko, Maksym, V
    Bodnarchuk, Maryna, I
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [22] Colloidal Antimony Sulfide Nanoparticles as a High-Performance Anode Material for Li-ion and Na-ion Batteries
    Kostiantyn V. Kravchyk
    Maksym V. Kovalenko
    Maryna I. Bodnarchuk
    Scientific Reports, 10
  • [23] ?-MnS nanoparticles in-situ anchored in 3D macroporous honeycomb carbon as high-performance anode for Li-ion batteries
    Zhu, S. Y.
    Yuan, Y. F.
    Du, P. F.
    Zhu, M.
    Chen, Y. B.
    Guo, S. Y.
    APPLIED SURFACE SCIENCE, 2023, 616
  • [24] Adsorption Mechanism and High-Performance Metal-Ion Batteries Anode Material for Semimetal Carbon Honeycomb
    Zhang, Jide
    Wang, Shuaiwei
    Luo, Xiangyi
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2020, 217 (21):
  • [25] First Principles Study of Penta-siligraphene as High-Performance Anode Material for Li-Ion Batteries
    Wang, Hewen
    Wu, Musheng
    Tian, Zhengfang
    Xu, Bo
    Ouyang, Chuying
    NANOSCALE RESEARCH LETTERS, 2019, 14 (1):
  • [26] First Principles Study of Penta-siligraphene as High-Performance Anode Material for Li-Ion Batteries
    Hewen Wang
    Musheng Wu
    Zhengfang Tian
    Bo Xu
    Chuying Ouyang
    Nanoscale Research Letters, 2019, 14
  • [27] Substoichiometric Silicon Nitride -An Anode Material for Li-ion Batteries Promising High Stability and High Capacity
    Ulvestad, Asbjorn
    Andersen, Hanne F.
    Jensen, Ingvild J. T.
    Mongstad, Trygve T.
    Maehlen, Jan Petter
    Prytz, Oystein
    Kirkengen, Martin
    SCIENTIFIC REPORTS, 2018, 8
  • [28] Substoichiometric Silicon Nitride – An Anode Material for Li-ion Batteries Promising High Stability and High Capacity
    Asbjørn Ulvestad
    Hanne F. Andersen
    Ingvild J. T. Jensen
    Trygve T. Mongstad
    Jan Petter Mæhlen
    Øystein Prytz
    Martin Kirkengen
    Scientific Reports, 8
  • [29] Carbon cloth supported anatase TiO2 aligned arrays as a high-performance anode material for Li-ion batteries
    Wang, Guangjin
    Sun, Zixu
    Huang, Fei
    Gong, Chunli
    Liu, Hai
    Zheng, Genwen
    Wen, Sheng
    MATERIALS LETTERS, 2016, 171 : 150 - 153
  • [30] Si/graphene composite as high-performance anode materials for Li-ion batteries
    Ying-jie Zhang
    Hua Chu
    Li-wen Zhao
    Long-fei Yuan
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 6657 - 6663