Accuracy Improvement in DOA Estimation with Deep Learning

被引:6
|
作者
Kase, Yuya [1 ]
Nishimura, Toshihiko [1 ]
Ohgane, Takeo [1 ]
Ogawa, Yasutaka [1 ]
Sato, Takanori [1 ]
Kishiyama, Yoshihisa [2 ]
机构
[1] Hokkaido Univ, Fac Informat Sci & Technol, Grad Sch, Sapporo, Hokkaido 0600814, Japan
[2] NTT DOCOMO INC, Res Labs, Yokosuka, Kanagawa 2398536, Japan
关键词
DOA estimation; deep learning; machine learning;
D O I
10.1587/transcom.2021EBT0001
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Direction of arrival (DOA) estimation of wireless signals is demanded in many applications. In addition to classical methods such as MUSIC and ESPRIT, non-linear algorithms such as compressed sensing have become common subjects of study recently. Deep learning or machine learning is also known as a non-linear algorithm and has been applied in various fields. Generally, DOA estimation using deep learning is classified as on-grid estimation. A major problem of on-grid estimation is that the accuracy may be degraded when the DOA is near the boundary. To reduce such estimation errors, we propose a method of combining two DNNs whose grids are offset by one half of the grid size. Simulation results show that our proposal outperforms MUSIC which is a typical off-grid estimation method. Furthermore, it is shown that the DNN specially trained for a close DOA case achieves very high accuracy for that case compared with MUSIC.
引用
收藏
页码:588 / 599
页数:12
相关论文
共 50 条
  • [21] Design of sparse arrays via deep learning for enhanced DOA estimation
    Wandale, Steven
    Ichige, Koichi
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2021, 2021 (01)
  • [22] An end-to-end DOA estimation method based on deep learning for underwater acoustic array
    Peng, Junyu
    Nie, Weihang
    Li, Ta
    Xu, Ji
    2022 OCEANS HAMPTON ROADS, 2022,
  • [23] Design of sparse arrays via deep learning for enhanced DOA estimation
    Steven Wandale
    Koichi Ichige
    EURASIP Journal on Advances in Signal Processing, 2021
  • [24] Angle Separation Learning for Coherent DOA Estimation With Deep Sparse Prior
    Xiang, Houhong
    Chen, Baixiao
    Yang, Minglei
    Xu, Saiqin
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (02) : 465 - 469
  • [25] A Novel Deep Learning GPS Anti-spoofing System with DOA Time-series Estimation
    Jayaweera, Milidu
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [26] A Proposal of an End-to-End DoA Estimation System Aided by Deep Learning
    Ando, Daniel Akira
    Nishimura, Toshihiko
    Sato, Takanori
    Ohgane, Takeo
    Ogawa, Yasutaka
    Hagiwara, Junichiro
    2022 25TH INTERNATIONAL SYMPOSIUM ON WIRELESS PERSONAL MULTIMEDIA COMMUNICATIONS (WPMC), 2022,
  • [27] Reverberation aware deep learning for environment tolerant microphone array DOA estimation
    Liu, Yuji
    Tong, Feng
    Zhong, Shuanglian
    Hong, Qingyang
    Li, Lin
    APPLIED ACOUSTICS, 2021, 184
  • [28] Adversarial Attacks on Deep Learning-Based DOA Estimation With Covariance Input
    Yang, Zhuang
    Zheng, Shilian
    Zhang, Luxin
    Zhao, Zhijin
    Yang, Xiaoniu
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1377 - 1381
  • [29] Deep Q-Learning in Robotics: Improvement of Accuracy and Repeatability
    Sumanas, Marius
    Petronis, Algirdas
    Bucinskas, Vytautas
    Dzedzickis, Andrius
    Virzonis, Darius
    Morkvenaite-Vilkonciene, Inga
    SENSORS, 2022, 22 (10)
  • [30] Impact of deep-learning CT image denoising on the accuracy of radiomics parameter estimation
    Pandurevic, Pontus
    Back, Alex
    Hein, Dennis
    Persson, Mats
    MEDICAL IMAGING 2024: PHYSICS OF MEDICAL IMAGING, PT 1, 2024, 12925