Comparison of affinity ranking using AutoDock-GPU and MM-GBSA scores for BACE-1 inhibitors in the D3R Grand Challenge 4

被引:57
作者
El Khoury, Lea [1 ]
Santos-Martins, Diogo [2 ]
Sasmal, Sukanya [1 ]
Eberhardt, Jerome [2 ]
Bianco, Giulia [2 ]
Ambrosio, Francesca Alessandra [2 ,3 ]
Solis-Vasquez, Leonardo [4 ]
Koch, Andreas [4 ]
Forli, Stefano [2 ]
Mobley, David L. [1 ,5 ]
机构
[1] Univ Calif Irvine, Dept Pharmaceut Sci, Irvine, CA 92697 USA
[2] Scripps Res Inst, Dept Integrat Struct & Computat Biol, 10550 North Torrey Pines Rd, La Jolla, CA 92037 USA
[3] Magna Graecia Univ Catanzaro, Dept Hlth Sci, Campus S Venuta, I-88100 Catanzaro, Italy
[4] Tech Univ Darmstadt, Embedded Syst & Applicat Grp, Darmstadt, Germany
[5] Univ Calif Irvine, Dept Chem, 147 Bison Modular, Irvine, CA 92697 USA
基金
美国国家卫生研究院;
关键词
Docking; MM-GBSA; AutoDock; Scoring functions; GENERALIZED BORN; FREE-ENERGIES; PROTEIN; BINDING; DOCKING; PERFORMANCE; MODEL; MM/GBSA; PBSA; PREDICTIONS;
D O I
10.1007/s10822-019-00240-w
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Molecular docking has been successfully used in computer-aided molecular design projects for the identification of ligand poses within protein binding sites. However, relying on docking scores to rank different ligands with respect to their experimental affinities might not be sufficient. It is believed that the binding scores calculated using molecular mechanics combined with the Poisson-Boltzman surface area (MM-PBSA) or generalized Born surface area (MM-GBSA) can predict binding affinities more accurately. In this perspective, we decided to take part in Stage 2 of the Drug Design Data Resource (D3R) Grand Challenge 4 (GC4) to compare the performance of a quick scoring function, AutoDock4, to that of MM-GBSA in predicting the binding affinities of a set of beta-Amyloid Cleaving Enzyme 1 (BACE-1) ligands. Our results show that re-scoring docking poses using MM-GBSA did not improve the correlation with experimental affinities. We further did a retrospective analysis of the results and found that our MM-GBSA protocol is sensitive to details in the protein-ligand system: (i) neutral ligands are more adapted to MM-GBSA calculations than charged ligands, (ii) predicted binding affinities depend on the initial conformation of the BACE-1 receptor, (iii) protonating the aspartyl dyad of BACE-1 correctly results in more accurate binding affinity predictions.
引用
收藏
页码:1011 / 1020
页数:10
相关论文
共 54 条
[1]  
[Anonymous], 2008, Chemistry Central Journal
[2]  
[Anonymous], ADADELTA: An Adaptive Learning Rate Method
[3]   HARMONIC-ANALYSIS OF LARGE SYSTEMS .1. METHODOLOGY [J].
BROOKS, BR ;
JANEZIC, D ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1995, 16 (12) :1522-1542
[4]  
Case D.A., 2018, AMBER 2018
[5]  
Case D.A., 2016, AMBER
[6]   Evaluating the accuracy of the quasiharmonic approximation [J].
Chang, CE ;
Chen, W ;
Gilson, MK .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2005, 1 (05) :1017-1028
[7]   Constant pH Molecular Dynamics Reveals pH-Modulated Binding of Two Small-Molecule BACE1 Inhibitors [J].
Ellis, Christopher R. ;
Tsai, Cheng-Chieh ;
Hou, Xinjun ;
Shen, Jana .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (06) :944-949
[8]   Performance comparison of generalized born and Poisson methods in the calculation of electrostatic solvation energies for protein structures [J].
Feig, M ;
Onufriev, A ;
Lee, MS ;
Im, W ;
Case, DA ;
Brooks, CL .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2004, 25 (02) :265-284
[9]   Computational protein-ligand docking and virtual drug screening with the AutoDock suite [J].
Forli, Stefano ;
Huey, Ruth ;
Pique, Michael E. ;
Sanner, Michel F. ;
Goodsell, David S. ;
Olson, Arthur J. .
NATURE PROTOCOLS, 2016, 11 (05) :905-919
[10]   D3R Grand Challenge 3: blind prediction of protein-ligand poses and affinity rankings [J].
Gaieb, Zied ;
Parks, Conor D. ;
Chiu, Michael ;
Yang, Huanwang ;
Shao, Chenghua ;
Walters, W. Patrick ;
Lambert, Millard H. ;
Nevins, Neysa ;
Bembenek, Scott D. ;
Ameriks, Michael K. ;
Mirzadegan, Tara ;
Burley, Stephen K. ;
Amaro, Rommie E. ;
Gilson, Michael K. .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (01) :1-18