Blood-brain barrier-penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy

被引:122
作者
Zou, Yan [1 ,2 ]
Sun, Xinhong [1 ]
Yang, Qingshan [1 ]
Zheng, Meng [1 ]
Shimoni, Olga [3 ]
Ruan, Weimin [1 ]
Wang, Yibin [1 ]
Zhang, Dongya [1 ]
Yin, Jinlong [1 ]
Huang, Xiangang [4 ]
Tao, Wei [4 ]
Park, Jong Bae [5 ]
Liang, Xing-Jie [6 ,7 ]
Leong, Kam W. [8 ]
Shi, Bingyang [1 ,2 ]
机构
[1] Henan Univ, Acad Adv Interdisciplinary Studies, Henan Macquarie Uni Joint Ctr Biomed Innovat, Sch Life Sci,Henan Key Lab Brain Targeted Bionano, Kaifeng 475004, Henan, Peoples R China
[2] Macquarie Univ, Fac Med Hlth & Human Sci, Macquarie Med Sch, Sydney, NSW 2109, Australia
[3] Univ Technol Sydney, Fac Sci, Inst Biomed Mat & Devices IBMD, 15 Broadway, Sydney, NSW 2007, Australia
[4] Harvard Med Sch, Ctr Nanomed, Dept Anesthesiol, 25 Shattuck St, Boston, MA 02115 USA
[5] Natl Canc Ctr, Grad Sch Canc Sci & Policy, Dept Canc Biomed Sci, Goyang 10408, South Korea
[6] Chinese Acad Sci, Chinese Acad Sci CAS Ctr Excellence Nanosci, Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China
[7] Chinese Acad Sci, CAS Key Lab Biol Effects Nanomat & Nanosafety, Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China
[8] Columbia Univ, Dept Biomed Engn, New York, NY 10032 USA
基金
澳大利亚国家健康与医学研究理事会; 英国医学研究理事会; 澳大利亚研究理事会; 中国国家自然科学基金;
关键词
DELIVERY; CHALLENGES; OPPORTUNITIES; CAPSULES; RELEASE; SYSTEM; TARGET; CELLS; RNA;
D O I
10.1126/sciadv.abm8011
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We designed a unique nanocapsule for efficient single CRISPR-Cas9 capsuling, noninvasive brain delivery and tumor cell targeting, demonstrating an effective and safe strategy for glioblastoma gene therapy. Our CRISPR-Cas9 nanocapsules can be simply fabricated by encapsulating the single Cas9/sgRNA complex within a glutathione-sensitive polymer shell incorporating a dual-action ligand that facilitates BBB penetration, tumor cell targeting, and Cas9/sgRNA selective release. Our encapsulating nanocapsules evidenced promising glioblastoma tissue targeting that led to high PLK1 gene editing efficiency in a brain tumor (up to 38.1%) with negligible (less than 0.5%) off-target gene editing in high-risk tissues. Treatment with nanocapsules extended median survival time (68 days versus 24 days in nonfunctional sgRNA-treated mice). Our new CRISPR-Cas9 delivery system thus addresses various delivery challenges to demonstrate safe and tumor-specific delivery of gene editing Cas9 ribonucleoprotein for improved glioblastoma treatment that may potentially be therapeutically useful in other brain diseases.
引用
收藏
页数:14
相关论文
共 50 条
[31]   Camouflaging nanoreactor traverse the blood-brain barrier to catalyze redox cascade for synergistic therapy of glioblastoma [J].
Cheng, WeiYi ;
Ren, WeiYe ;
Ye, Peng ;
He, Li ;
Bao, Dandan ;
Yue, Tianxiang ;
Lai, Jianjun ;
Wu, Yajun ;
Wei, YingHui ;
Wu, Zhibing ;
Piao, Ji-Gang .
BIOMATERIALS, 2024, 311
[32]   Near-Infrared Optogenetic Nanosystem for Spatiotemporal Control of CRISPR-Cas9 Gene Editing and Synergistic Photodynamic Therapy [J].
Zeng, Junyi ;
Huang, Xinbo ;
Yang, Yajie ;
Wang, Jieyi ;
Shi, Yuanchao ;
Li, Hui ;
Hu, Ning ;
Yu, Bo ;
Mu, Jing .
ACS APPLIED MATERIALS & INTERFACES, 2024, 17 (01) :701-710
[33]   Albumin -conjugated drug is irresistible by single gene mutation of endocytic system: Verification by genome-wide CRISPR-Cas9 loss -of -function screens [J].
Yuan, Fang ;
Sun, Mengnan ;
Liu, Huiqin ;
Qian, Feng .
JOURNAL OF CONTROLLED RELEASE, 2020, 323 :311-320
[34]   CPP-Based Bioactive Drug Delivery to Penetrate the Blood-Brain Barrier: A Potential Therapy for Glioblastoma Multiforme [J].
Mehdipour, Golnaz ;
Wintrasiri, Milint Neleptchenko ;
Ghasemi, Sorayya .
CURRENT DRUG TARGETS, 2022, 23 (07) :719-728
[35]   Streamlined, single-step non-viral CRISPR-Cas9 knockout strategy enhances gene editing efficiency in primary human chondrocyte populations [J].
Ponta, Simone ;
Bonato, Angela ;
Neidenbach, Philipp ;
Bruhin, Valentino F. ;
Laurent, Alexis ;
Applegate, Lee Ann ;
Zenobi-Wong, Marcy ;
Barreto, Goncalo .
ARTHRITIS RESEARCH & THERAPY, 2024, 26 (01)
[36]   Targeting DAD1 gene with CRISPR-Cas9 system transmucosally delivered by fluorinated polylysine nanoparticles for bladder cancer intravesical gene therapy [J].
Tang, Dongdong ;
Yan, Yang ;
Li, Yangyang ;
Li, Yuqing ;
Tian, Junqiang ;
Yang, Li ;
Ding, Hui ;
Bashir, Ghassan ;
Zhou, Houhong ;
Ding, Qiuxia ;
Tao, Ran ;
Zhang, Shaohua ;
Wang, Zhiping ;
Wu, Song .
THERANOSTICS, 2024, 14 (01) :203-219
[37]   Hypoxia-directed tumor targeting of CRISPR-Cas9 and HSV-TK suicide gene therapy using lipid nanoparticles [J].
Davis, Alicia ;
Morris, Kevin, V ;
Shevchenko, Galina .
MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2022, 25 :158-169
[38]   Homotypic Membrane-Enhanced Blood-Brain Barrier Crossing and Glioblastoma Targeting for Precise Surgical Resection and Photothermal Therapy [J].
Zhang, Hang ;
Guan, Shujuan ;
Wei, Tianxiang ;
Wang, Tianyou ;
Zhang, Junxia ;
You, Yongping ;
Wang, Zhaoyin ;
Dai, Zhihui .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (10) :5930-5940
[39]   Single plasmid systems for inducible dual protein expression and for CRISPR-Cas9/CRISPRi gene regulation in lactic acid bacterium Lactococcus lactis [J].
Berlec, Ales ;
Skrlec, Katja ;
Kocjan, Janja ;
Olenic, Maria ;
Strukelj, Borut .
SCIENTIFIC REPORTS, 2018, 8
[40]   A comparison of Agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR-Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius [J].
Weyda, Istvan ;
Yang, Lei ;
Vang, Jesper ;
Ahring, Birgitte K. ;
Lubeck, Mette ;
Lubeck, Peter S. .
JOURNAL OF MICROBIOLOGICAL METHODS, 2017, 135 :26-34