Double Fourier series;
L-1-convergence;
Hardy's inequality for functions in the Hardy space H-1;
Bernstein-Zygmund inequalities for the derivatives of trigonometric polynomials in L-1-norm;
Conjugate trigonometric polynomials;
D O I:
10.1016/j.jmaa.2009.09.030
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We extend the results of A.S. Belov from single to double Fourier series, which give necessary conditions in terms of the Fourier coefficients for L-1-convergence. Our basic tools are Hardy's inequality for the Taylor coefficients of a function in the Hardy space H-1 on the unit disk. and the Bernstein-Zygmund inequalities for the derivative of a trigonometric polynomial in L-1-norm. (C) 2009 Elsevier Inc. All rights reserved.
机构:
Yerevan State Univ, Fac Phys, Chair Higher Math, Alex Manoogyan Str 1, Yerevan 0025, ArmeniaYerevan State Univ, Fac Phys, Chair Higher Math, Alex Manoogyan Str 1, Yerevan 0025, Armenia
Grigoryan, M. G.
Sargsyan, S. A.
论文数: 0引用数: 0
h-index: 0
机构:
Yerevan State Univ, Fac Phys, Chair Higher Math, Alex Manoogyan Str 1, Yerevan 0025, ArmeniaYerevan State Univ, Fac Phys, Chair Higher Math, Alex Manoogyan Str 1, Yerevan 0025, Armenia