Combining the polarizable Drude force field with a continuum electrostatic Poisson-Boltzmann implicit solvation model

被引:16
作者
Aleksandrov, Alexey [1 ]
Lin, Fang-Yu [2 ]
Roux, Benoit [3 ]
MacKerell, Alexander D., Jr. [2 ]
机构
[1] CNRS, INSERM, Ecole Polytech, Lab Opt & Biosci, F-91128 Palaiseau, France
[2] Univ Maryland, Sch Pharm, Dept Pharmaceut Sci, 20 Penn St, Baltimore, MD 21201 USA
[3] Univ Chicago, Gordon Ctr Integrat Sci, Dept Biochem & Mol Biol, 929 E57th St, Chicago, IL 60637 USA
关键词
implicit solvent model; Poisson-Boltzmann continuum solvation model; protein-protein interactions; Drude force field; binding free energy; electronic polarization; molecular dynamics; CHARMM; FREE-ENERGY SIMULATIONS; MOLECULAR-DYNAMICS SIMULATIONS; GENERALIZED BORN MODEL; CENTERED DIELECTRIC FUNCTIONS; CHARGE HYDRATION ASYMMETRY; BINDING FREE-ENERGIES; SOLVENT MODELS; ATOMIC RADII; EXPLICIT SOLVENT; SURFACE-AREA;
D O I
10.1002/jcc.25345
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, we have combined the polarizable force field based on the classical Drude oscillator with a continuum Poisson-Boltzmann/solvent-accessible surface area (PB/SASA) model. In practice, the positions of the Drude particles experiencing the solvent reaction field arising from the fixed charges and induced polarization of the solute must be optimized in a self-consistent manner. Here, we parameterized the model to reproduce experimental solvation free energies of a set of small molecules. The model reproduces well-experimental solvation free energies of 70 molecules, yielding a root mean square difference of 0.8 kcal/mol versus 2.5 kcal/mol for the CHARMM36 additive force field. The polarization work associated with the solute transfer from the gas-phase to the polar solvent, a term neglected in the framework of additive force fields, was found to make a large contribution to the total solvation free energy, comparable to the polar solute-solvent solvation contribution. The Drude PB/SASA also reproduces well the electronic polarization from the explicit solvent simulations of a small protein, BPTI. Model validation was based on comparisons with the experimental relative binding free energies of 371 single alanine mutations. With the Drude PB/SASA model the root mean square deviation between the predicted and experimental relative binding free energies is 3.35 kcal/mol, lower than 5.11 kcal/mol computed with the CHARMM36 additive force field. Overall, the results indicate that the main limitation of the Drude PB/SASA model is the inability of the SASA term to accurately capture non-polar solvation effects. (c) 2018 Wiley Periodicals, Inc.
引用
收藏
页码:1707 / 1719
页数:13
相关论文
共 92 条
[1]   Reducing the Secondary Structure Bias in the Generalized Born Model via R6 Effective Radii [J].
Aguilar, Boris ;
Shadrach, Richard ;
Onufriev, Alexey V. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (12) :3613-3630
[2]   Alchemical free energy simulations for biological complexes: powerful but temperamental ... [J].
Aleksandrov, Alexey ;
Thompson, Damien ;
Simonson, Thomas .
JOURNAL OF MOLECULAR RECOGNITION, 2010, 23 (02) :117-127
[3]  
[Anonymous], 2007, NUMERICAL RECIPES 3
[4]   PREDICTION OF PH-DEPENDENT PROPERTIES OF PROTEINS [J].
ANTOSIEWICZ, J ;
MCCAMMON, JA ;
GILSON, MK .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 238 (03) :415-436
[5]   Electrostatics of nanosystems: Application to microtubules and the ribosome [J].
Baker, NA ;
Sept, D ;
Joseph, S ;
Holst, MJ ;
McCammon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10037-10041
[6]   Applying Physics-Based Scoring to Calculate Free Energies of Binding for Single Amino Acid Mutations in Protein-Protein Complexes [J].
Beard, Hege ;
Cholleti, Anuradha ;
Pearlman, David ;
Sherman, Woody ;
Loving, Kathryn A. .
PLOS ONE, 2013, 8 (12)
[7]   Accurate transferable model for water, n-octanol, and n-hexadecane solvation free energies [J].
Bordner, AJ ;
Cavasotto, CN ;
Abagyan, RA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (42) :11009-11015
[8]   CHARMM: The Biomolecular Simulation Program [J].
Brooks, B. R. ;
Brooks, C. L., III ;
Mackerell, A. D., Jr. ;
Nilsson, L. ;
Petrella, R. J. ;
Roux, B. ;
Won, Y. ;
Archontis, G. ;
Bartels, C. ;
Boresch, S. ;
Caflisch, A. ;
Caves, L. ;
Cui, Q. ;
Dinner, A. R. ;
Feig, M. ;
Fischer, S. ;
Gao, J. ;
Hodoscek, M. ;
Im, W. ;
Kuczera, K. ;
Lazaridis, T. ;
Ma, J. ;
Ovchinnikov, V. ;
Paci, E. ;
Pastor, R. W. ;
Post, C. B. ;
Pu, J. Z. ;
Schaefer, M. ;
Tidor, B. ;
Venable, R. M. ;
Woodcock, H. L. ;
Wu, X. ;
Yang, W. ;
York, D. M. ;
Karplus, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) :1545-1614
[9]   Electrostatic Component of Binding Energy: Interpreting Predictions from Poisson-Boltzmann Equation and Modeling Protocols [J].
Chakavorty, Arghya ;
Li, Lin ;
Alexov, Emil .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2016, 37 (28) :2495-2507
[10]   Variational approach for nonpolar solvation analysis [J].
Chen, Zhan ;
Zhao, Shan ;
Chun, Jaehun ;
Thomas, Dennis G. ;
Baker, Nathan A. ;
Bates, Peter W. ;
Wei, G. W. .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (08)