n-dimensional optical orthogonal codes, bounds and optimal constructions

被引:4
|
作者
Alderson, T. L. [1 ]
机构
[1] Univ New Brunswick St John, St John, NB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Optical orthogonal code; Johnson bound; OOC; Constant weight codes; Singer group; MULTIPLE-ACCESS TECHNIQUES; FIBER NETWORKS; CDMA; DESIGN; ARCS;
D O I
10.1007/s00200-018-00379-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We generalize to higher dimensions the notions of optical orthogonal codes. We establish upper bounds on the capacity of general n-dimensional OOCs, and on ideal codes (codes with zero off-peak autocorrelation). The bounds are based on the Johnson bound, and subsume bounds in the literature. We also present two new constructions of ideal codes; one furnishes an infinite family of optimal codes for each dimension n >= 2, and another which provides an asymptotically optimal family for each dimension n >= 2. The constructions presented are based on certain point-sets in finite projective spaces of dimension k over GF(q) denoted PG(k, q).
引用
收藏
页码:373 / 386
页数:14
相关论文
共 50 条
  • [41] On Balanced Optimal (18u,{3,4},1) Optical Orthogonal Codes
    Zhao, Hengming
    JOURNAL OF COMBINATORIAL DESIGNS, 2012, 20 (06) : 290 - 303
  • [42] New Construction of Asymptotically Optimal Optical Orthogonal Codes
    Chung, Jin-Ho
    Yang, Kyeongcheol
    2015 IEEE INFORMATION THEORY WORKSHOP - FALL (ITW), 2015, : 129 - 132
  • [43] Constructions of Optimal 2-D Optical Orthogonal Codes via Generalized Cyclotomic Classes
    Cai, Han
    Liang, Hongbin
    Tang, Xiaohu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (01) : 688 - 695
  • [44] Asymptotically Optimal Optical Orthogonal Codes With New Parameters
    Chung, Jin-Ho
    Yang, Kyeongcheol
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (06) : 3999 - 4005
  • [45] General Constructions for (v, 4, 1) Optical Orthogonal Codes via Perfect Difference Families
    Jiang, Jing
    Wu, Dianhua
    Fan, Pingzhi
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2012, E95A (11) : 1921 - 1925
  • [46] Optimal Two-Dimensional Variable-Weight Optical Orthogonal Codes via Scarce Mixed Difference Families
    Chen, Jingyuan
    Wu, Dianhua
    SIXTH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS, 2013, : 40 - 43
  • [47] Optimal two-dimensional multilength optical orthogonal codes via compatible mixed difference packing set systems
    Zhao, Hengming
    Qin, Rongcun
    Cheng, Minquan
    Wu, Dianhua
    DESIGNS CODES AND CRYPTOGRAPHY, 2025,
  • [48] NEW OPTIMAL (v, {3, 5}, 1, Q) OPTICAL ORTHOGONAL CODES
    Yu, Huangsheng
    Wu, Dianhua
    Wang, Jinhua
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2016, 10 (04) : 811 - 823
  • [49] Two-weight codes: Upper bounds and new optimal constructions
    Lan, Liantao
    Chang, Yanxun
    DISCRETE MATHEMATICS, 2019, 342 (11) : 3098 - 3113
  • [50] CONSTRUCTIONS OF BALANCED (N, M, {4, 5}, 1; 2) MULTILENGTH VARIABLE-WEIGHT OPTICAL ORTHOGONAL CODES
    Zhao, H. E. N. G. M. I. N. G.
    Qin, R. O. N. G. C. U. N.
    Wu, D. I. A. N. H. U. A.
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022,