n-dimensional optical orthogonal codes, bounds and optimal constructions

被引:4
|
作者
Alderson, T. L. [1 ]
机构
[1] Univ New Brunswick St John, St John, NB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Optical orthogonal code; Johnson bound; OOC; Constant weight codes; Singer group; MULTIPLE-ACCESS TECHNIQUES; FIBER NETWORKS; CDMA; DESIGN; ARCS;
D O I
10.1007/s00200-018-00379-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We generalize to higher dimensions the notions of optical orthogonal codes. We establish upper bounds on the capacity of general n-dimensional OOCs, and on ideal codes (codes with zero off-peak autocorrelation). The bounds are based on the Johnson bound, and subsume bounds in the literature. We also present two new constructions of ideal codes; one furnishes an infinite family of optimal codes for each dimension n >= 2, and another which provides an asymptotically optimal family for each dimension n >= 2. The constructions presented are based on certain point-sets in finite projective spaces of dimension k over GF(q) denoted PG(k, q).
引用
收藏
页码:373 / 386
页数:14
相关论文
共 50 条
  • [31] Combinatorial constructions for optimal 2-D optical orthogonal codes with AM-OPPTS property
    Dai, Peipei
    Wang, Jianmin
    Yin, Jianxing
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 71 (02) : 315 - 330
  • [32] New Optimal Variable-Weight Optical Orthogonal Codes
    Wu, Dianhua
    Cao, Jiayun
    Fan, Pingzhi
    SEQUENCES AND THEIR APPLICATIONS-SETA 2010, 2010, 6338 : 102 - 112
  • [33] A new class of optimal optical orthogonal codes with weight six
    Wang, Su
    Wang, Lingye
    Wang, Jinhua
    2015 SEVENTH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS (IWSDA), 2015, : 61 - 64
  • [34] The Existence of Optimal (v, 4, 1) Optical Orthogonal Codes Achieving the Johnson Bound
    Zhao, Chenya
    Chang, Yanxun
    Feng, Tao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (12) : 8746 - 8757
  • [35] Construction of Optimal 2D Optical Codes Using (n, w, 2, 2) Optical Orthogonal Codes
    Lin, Yu-Chei
    Yang, Guu-Chang
    Chang, Cheng-Yuan
    Kwong, Wing C.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2011, 59 (01) : 194 - 200
  • [36] Optimal 2-D (n x m, 3, 2, 1)-optical Orthogonal Codes
    Wang, Xiaomiao
    Chang, Yanxun
    Feng, Tao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (01) : 710 - 725
  • [37] Optimal three-dimensional optical orthogonal codes of weight three
    Shum, Kenneth W.
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 75 (01) : 109 - 126
  • [38] Optimal three-dimensional optical orthogonal codes of weight three
    Kenneth W. Shum
    Designs, Codes and Cryptography, 2015, 75 : 109 - 126
  • [39] Constructions of optical orthogonal codes from finite geometry
    Alderson, T. L.
    Mellinger, Keith E.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (03) : 785 - 793
  • [40] Construction for optimal optical orthogonal codes
    An, XQ
    Qiu, K
    2002 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS AND WEST SINO EXPOSITION PROCEEDINGS, VOLS 1-4, 2002, : 96 - 100