n-dimensional optical orthogonal codes, bounds and optimal constructions

被引:4
|
作者
Alderson, T. L. [1 ]
机构
[1] Univ New Brunswick St John, St John, NB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Optical orthogonal code; Johnson bound; OOC; Constant weight codes; Singer group; MULTIPLE-ACCESS TECHNIQUES; FIBER NETWORKS; CDMA; DESIGN; ARCS;
D O I
10.1007/s00200-018-00379-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We generalize to higher dimensions the notions of optical orthogonal codes. We establish upper bounds on the capacity of general n-dimensional OOCs, and on ideal codes (codes with zero off-peak autocorrelation). The bounds are based on the Johnson bound, and subsume bounds in the literature. We also present two new constructions of ideal codes; one furnishes an infinite family of optimal codes for each dimension n >= 2, and another which provides an asymptotically optimal family for each dimension n >= 2. The constructions presented are based on certain point-sets in finite projective spaces of dimension k over GF(q) denoted PG(k, q).
引用
收藏
页码:373 / 386
页数:14
相关论文
共 50 条
  • [21] UNIFIED COMBINATORIAL CONSTRUCTIONS OF OPTIMAL OPTICAL ORTHOGONAL CODES
    Fan, Cuiling
    Momihara, Koji
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2014, 8 (01) : 53 - 66
  • [22] Constructions of optimal optical orthogonal codes with weight five
    Ma, SK
    Chang, YX
    JOURNAL OF COMBINATORIAL DESIGNS, 2005, 13 (01) : 54 - 69
  • [23] General Constructions of Optimal Variable-Weight Optical Orthogonal Codes
    Jiang, Jing
    Wu, Dianhua
    Fan, Pingzhi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (07) : 4488 - 4496
  • [24] Asymptotically Optimal Optical Orthogonal Signature Pattern Codes
    Ji, Lijun
    Ding, Baokun
    Wang, Xin
    Ge, Gennian
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (07) : 5419 - 5431
  • [25] New Constructions of Optimal Optical Orthogonal Codes Based on Partitionable Sets and Almost Partitionable Sets
    Wang, Zijing
    Kong, Hairong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (04) : 2355 - 2363
  • [26] Optimal Two-Dimensional Optical Orthogonal Codes with the Best Cross-Correlation Constraint
    Feng, Tao
    Wang, Lidong
    Wang, Xiaomiao
    Zhao, Yancai
    JOURNAL OF COMBINATORIAL DESIGNS, 2017, 25 (08) : 349 - 380
  • [27] Combinatorial constructions of optimal (m, n, 4, 2) optical orthogonal signature pattern codes
    Jingyuan Chen
    Lijun Ji
    Yun Li
    Designs, Codes and Cryptography, 2018, 86 : 1499 - 1525
  • [28] Construction of Optimal Two-Dimensional Optical Orthogonal Codes with at Most One Pulse per Wavelength
    Shao, Minfeng
    Niu, Xianhua
    ENTROPY, 2024, 26 (09)
  • [29] Large Families of Asymptotically Optimal Two-Dimensional Optical Orthogonal Codes
    Omrani, Reza
    Garg, Gagan
    Kumar, P. Vijay
    Elia, Petros
    Bhambhani, Pankaj
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (02) : 1163 - 1185
  • [30] Optimal Variable-Weight Optical Orthogonal Codes via Difference Packings
    Wu, Dianhua
    Zhao, Hengming
    Fan, Pingzhi
    Shinohara, Satoshi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 57 (08) : 4053 - 4060