Water Level Reconstruction Based on Satellite Gravimetry in the Yangtze River Basin

被引:19
作者
Fok, Hok Sum [1 ,2 ]
He, Qing [1 ,2 ]
机构
[1] Wuhan Univ, Sch Geodesy & Geomat, Wuhan 430079, Hubei, Peoples R China
[2] Wuhan Univ, Key Lab Geospace Environm & Geodesy, Minist Educ, Wuhan 430079, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
satellite gravimetry; remote sensing; water level; PDSI; ENSO; ASIAN SUMMER MONSOON; DISCHARGE ESTIMATION; DROUGHT SEVERITY; INUNDATION AREA; STORAGE CHANGES; ALTIMETRY DATA; SOIL-MOISTURE; TIBETAN LAKES; MEKONG RIVER; GRACE;
D O I
10.3390/ijgi7070286
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The monitoring of hydrological extremes requires water level measurement. Owing to the decreasing number of continuous operating hydrological stations globally, remote sensing indices have been advocated for water level reconstruction recently. Nevertheless, the feasibility of gravimetrically derived terrestrial water storage (TWS) and its corresponding index for water level reconstruction have not been investigated. This paper aims to construct a correlative relationship between observed water level and basin-averaged Gravity Recovery and Climate Experiment (GRACE) TWS and its Drought Severity Index (GRACE-DSI), for the Yangtze river basin on a monthly temporal scale. The results are subsequently compared against traditional remote sensing, Palmer's Drought Severity Index (PDSI), and El Nino Southern Oscillation (ENSO) indices. Comparison of the water level reconstructed from GRACE TWS and its index, and that of remote sensing against observed water level reveals a Pearson Correlation Coefficient (PCC) above 0.90 and below 0.84, with a Root-Mean-Squares Error (RMSE) of 0.88-1.46 m, and 1.41-1.88 m and a Nash-Sutcliffe model efficiency coefficient (NSE) above 0.81 and below 0.70, respectively. The ENSO-reconstructed water levels are comparable to those based on remote sensing, whereas the PDSI-reconstructed water level shows a similar performance to that of GRACE TWS. The water level predicted at the location of another station also exhibits a similar performance. It is anticipated that the basin-averaged, remotely-sensed hydrological variables and their standardized forms (e.g., GRACE TWS and GRACE-DSI) are viable alternatives for reconstructing water levels for large river basins affected by the hydrological extremes under ENSO influence.
引用
收藏
页数:16
相关论文
共 93 条
[1]   Tracking fresh water from space [J].
Alsdorf, DE ;
Lettenmaier, DP .
SCIENCE, 2003, 301 (5639) :1491-+
[2]   Measuring surface water from space [J].
Alsdorf, Douglas E. ;
Rodriguez, Ernesto ;
Lettenmaier, Dennis P. .
REVIEWS OF GEOPHYSICS, 2007, 45 (02)
[3]  
Amante C., 2009, NOAA TECHNICAL MEMOR, P19, DOI 10.7289/V5C8276M
[4]   Global inland water monitoring from multi-mission altimetry [J].
Berry, PAM ;
Garlick, JD ;
Freeman, JA ;
Mathers, EL .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (16) :1-4
[5]  
Beven K. J., 2011, Rainfall-Runoff Modelling: The Primer
[6]   Using satellite altimetry data to augment flow estimation techniques on the Mekong River [J].
Birkinshaw, S. J. ;
O'Donnell, G. M. ;
Moore, P. ;
Kilsby, C. G. ;
Fowler, H. J. ;
Berry, P. A. M. .
HYDROLOGICAL PROCESSES, 2010, 24 (26) :3811-3825
[7]   Monitoring Continental Surface Waters by Satellite Altimetry [J].
Calmant, Stephane ;
Seyler, Frederique ;
Cretaux, Jean Francois .
SURVEYS IN GEOPHYSICS, 2008, 29 (4-5) :247-269
[8]   Observing seasonal steric sea level variations with GRACE and satellite altimetry [J].
Chambers, DP .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2006, 111 (C3)
[9]   The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE [J].
Chen, J. L. ;
Wilson, C. R. ;
Tapley, B. D. .
WATER RESOURCES RESEARCH, 2010, 46
[10]   Impact on the Yangtze (Changjiang) Estuary from its drainage basin: Sediment load and discharge [J].
Chen, ZY ;
Zhao, YW .
CHINESE SCIENCE BULLETIN, 2001, 46 :73-80