The Noether-Lefschetz conjecture and generalizations

被引:22
作者
Bergeron, Nicolas [1 ]
Li, Zhiyuan [2 ]
Millson, John [3 ]
Moeglin, Colette [4 ]
机构
[1] Univ Paris Diderot, UPMC Univ Paris 06, Sorbonne Univ,Sorbonne Paris Cite, Inst Math Jussieu Paris Rive Gauche,CNRS,UMR 7586, 4 Pl Jussieu, F-75005 Paris, France
[2] Fudan Univ, Shanghai Ctr Math Sci, Handan Rd 220,Guanghua East Tower, Shanghai 200433, Peoples R China
[3] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[4] Univ Paris Diderot, UPMC Univ Paris 06, Sorbonne Univ,Sorbonne Paris Cite, Inst Math Jussieu Paris Rive Gauche,CNRS,UMR7586, 4 Pl Jussieu, F-75005 Paris, France
关键词
K3; SURFACES; ARITHMETIC QUOTIENTS; FUNDAMENTAL LEMMA; AUTOMORPHIC-FORMS; PICARD-GROUPS; K-3; MODULI SPACE; VARIETIES; REPRESENTATIONS; PRODUCTS;
D O I
10.1007/s00222-016-0695-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the Noether-Lefschetz conjecture on the moduli space of quasi-polarized K3 surfaces. This is deduced as a particular case of a general theorem that states that low degree cohomology classes of arithmetic manifolds of orthogonal type are dual to the classes of special cycles, i.e. sub-arithmetic manifolds of the same type. For compact manifolds this was proved in [3], here we extend the results of [3] to non-compact manifolds. This allows us to apply our results to the moduli spaces of quasi-polarized K3 surfaces.
引用
收藏
页码:501 / 552
页数:52
相关论文
共 67 条
  • [1] Hodge Type Theorems for Arithmetic Manifolds Associated to Orthogonal Groups
    Bergeron, Nicolas
    Millson, John
    Moeglin, Colette
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (15) : 4495 - 4624
  • [2] The Hodge conjecture and arithmetic quotients of complex balls
    Bergeron, Nicolas
    Millson, John
    Moeglin, Colette
    [J]. ACTA MATHEMATICA, 2016, 216 (01) : 1 - 125
  • [3] Bergeron N, 2013, INVENT MATH, V192, P505, DOI 10.1007/s00222-012-0415-2
  • [4] Automorphic forms with singularities on Grassmannians
    Borcherds, RE
    [J]. INVENTIONES MATHEMATICAE, 1998, 132 (03) : 491 - 562
  • [5] Borcherds RE, 1998, J ALGEBRAIC GEOM, V7, P183
  • [6] L2-COHOMOLOGY OF LOCALLY SYMMETRIC MANIFOLDS OF FINITE VOLUME
    BOREL, A
    CASSELMAN, W
    [J]. DUKE MATHEMATICAL JOURNAL, 1983, 50 (03) : 625 - 647
  • [7] LAPLACIAN AND THE DISCRETE SPECTRUM OF AN ARITHMETIC GROUP
    BOREL, A
    GARLAND, H
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1983, 105 (02) : 309 - 335
  • [8] Borel A., 1981, PROGR MATH, V14, P21
  • [9] Borel A., 1979, Proc. Symp. Pure Math, VXXXIII, P27
  • [10] Borel A., 2000, Mathematical Surveys and Monographs