The Cauchy problem for 3-evolution equations with data in Gelfand-Shilov spaces

被引:7
作者
Arias Junior, Alexandre [1 ]
Ascanelli, Alessia [2 ]
Cappiello, Marco [3 ]
机构
[1] Univ Fed Parana, Dept Math, BR-81531980 Curitiba, Parana, Brazil
[2] Univ Ferrara, Dipartimento Matemat & Informat, Via Machiavelli 30, I-44121 Ferrara, Italy
[3] Univ Turin, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
关键词
p-evolution equations; Gelfand-Shilov spaces; Infinite-order pseudodifferential operators; P-EVOLUTION EQUATIONS; WELL-POSEDNESS; KDV EQUATION;
D O I
10.1007/s00028-022-00764-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for a third-order evolution operator P with (t, x)-depending coefficients and complex-valued lower-order terms. We assume the initial data to be Gevrey regular with an exponential decay at infinity, that is, the data belong to some Gelfand-Shilov space of type S. Under suitable assumptions on the decay at infinity of the imaginary parts of the coefficients of P we prove the existence of a solutionwith the sameGevrey regularity of the data andwe describe its behavior for vertical bar x vertical bar ->infinity.
引用
收藏
页数:40
相关论文
共 31 条
[1]   The interplay between decay of the data and regularity of the solution in Schrodinger equations [J].
Ascanelli, Alessia ;
Cicognani, Massimo ;
Reissig, Michael .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (04) :1649-1671
[2]   Schrodinger-type equations in Gelfand-Shilov spaces [J].
Ascanelli, Alessia ;
Cappiello, Marco .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 132 :207-250
[3]  
Ascanelli A, 2016, ADV DIFFERENTIAL EQU, V21, P1165
[4]   Semilinear p-evolution equations in Sobolev spaces [J].
Ascanelli, Alessia ;
Boiti, Chiara .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (10) :7563-7605
[5]   Weighted energy estimates for p-evolution equations in SG classes [J].
Ascanelli, Alessia ;
Cappiello, Marco .
JOURNAL OF EVOLUTION EQUATIONS, 2015, 15 (03) :583-607
[6]   Well-posedness of the Cauchy problem for p-evolution equations [J].
Ascanelli, Alessia ;
Boiti, Chiara ;
Zanghirati, Luisa .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (10) :2765-2795
[7]  
Baba A., 1994, TSUKUBA J MATH, V18, P101
[8]   WELL-POSEDNESS FOR DEGENERATE SCHRODINGER EQUATIONS [J].
Cicognani, Massimo ;
Reissig, Michael .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2014, 3 (01) :15-33
[9]  
Cicognani M, 2010, T AM MATH SOC, V362, P4853
[10]  
Dasgupta A., 2009, PSEUDODIFFERENTIAL O, P51