Criteria for optimizing kernel methods in fault monitoring process: A survey

被引:10
作者
Bernal-de-Lazaro, Jose M. [1 ]
-Corona, Carlos Cruz [2 ]
Silva-Neto, Antonio J. [3 ]
Llanes-Santiago, Orestes [1 ]
机构
[1] Univ Tecnol Habana Jose Antonio Echeverria, CUJAE, Dept Automat & Comp, Havana, Cuba
[2] Univ Granada, Dept Comp Sci & Artificial Intelligence, Granada, Spain
[3] Univ Estado Rio De Janeiro, IPRJ UERJ, Dept Mech Engn, Rio de Janeiro, RJ, Brazil
关键词
Kernel methods; Kernel functions; Fault detection; Data preprocessing; Kernel parameter; Objective functions; INDEPENDENT COMPONENT ANALYSIS; SUPPORT VECTOR MACHINE; FISHER DISCRIMINANT-ANALYSIS; PARTICLE SWARM OPTIMIZATION; CANONICAL VARIATE ANALYSIS; FEATURE-EXTRACTION; NONLINEAR PROCESSES; DATA-DRIVEN; DIAGNOSIS; KPCA;
D O I
10.1016/j.isatra.2021.08.040
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays, how to select the kernel function and their parameters for ensuring high-performance indicators in fault diagnosis applications remains as two open research issues. This paper provides a comprehensive literature survey of kernel-preprocessing methods in condition monitoring tasks, with emphasis on the procedures for selecting their parameters. Accordingly, twenty kernel optimization criteria and sixteen kernel functions are analyzed. A kernel evaluation framework is further provided for helping in the selection and adjustment of kernel functions. The proposal is validated via a KPCA-based monitoring scheme and two well-known benchmark processes. (C) 2021 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:259 / 272
页数:14
相关论文
共 131 条
[31]   Online monitoring of nonlinear multivariate industrial processes using filtering KICA-PCA [J].
Fan, Jicong ;
Qin, S. Joe ;
Wang, Youqing .
CONTROL ENGINEERING PRACTICE, 2014, 22 :205-216
[32]   Fault Diagnosis Method of Joint Fisher Discriminant Analysis Based on the Local and Global Manifold Learning and Its Kernel Version [J].
Feng, Jian ;
Wang, Jian ;
Zhang, Huaguang ;
Han, Zhiyan .
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2016, 13 (01) :122-133
[33]   Cross-validatory framework for optimal parameter estimation of KPCA and KPLS models [J].
Fu, Yujia ;
Kruger, Uwe ;
Li, Zhe ;
Xie, Lei ;
Thompson, Jillian ;
Rooney, David ;
Hahn, Juergen ;
Yang, Huizhong .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2017, 167 :196-207
[34]   Review on data-driven modeling and monitoring for plant-wide industrial processes [J].
Ge, Zhiqiang .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2017, 171 :16-25
[35]   Data Mining and Analytics in the Process Industry: The Role of Machine Learning [J].
Ge, Zhiqiang ;
Song, Zhihuan ;
Deng, Steven X. ;
Huang, Biao .
IEEE ACCESS, 2017, 5 :20590-20616
[36]   Semisupervised Kernel Learning for FDA Model and its Application for Fault Classification in Industrial Processes [J].
Ge, Zhiqiang ;
Zhong, Shiyong ;
Zhang, Yingwei .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2016, 12 (04) :1403-1411
[37]   Classes of kernels for machine learning: A statistics perspective [J].
Genton, MG .
JOURNAL OF MACHINE LEARNING RESEARCH, 2002, 2 (02) :299-312
[38]   New contributions to non-linear process monitoring through kernel partial least squares [J].
Godoy, Jose L. ;
Zumoffen, David A. ;
Vega, Jorge R. ;
Marchetti, Jacinto L. .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2014, 135 :76-89
[39]   Fault detection of uncertain nonlinear process using reduced interval kernel principal component analysis (RIKPCA) [J].
Hamrouni, Imen ;
Lahdhiri, Hajer ;
ben Abdellafou, Khaoula ;
Taouali, Okba .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 106 (9-10) :4567-4576
[40]   Fault detection of uncertain nonlinear process using interval-valued data-driven approach [J].
Harkat, M. -F. ;
Mansouri, M. ;
Nounou, M. ;
Nounou, H. .
CHEMICAL ENGINEERING SCIENCE, 2019, 205 :36-45