Criteria for optimizing kernel methods in fault monitoring process: A survey

被引:10
作者
Bernal-de-Lazaro, Jose M. [1 ]
-Corona, Carlos Cruz [2 ]
Silva-Neto, Antonio J. [3 ]
Llanes-Santiago, Orestes [1 ]
机构
[1] Univ Tecnol Habana Jose Antonio Echeverria, CUJAE, Dept Automat & Comp, Havana, Cuba
[2] Univ Granada, Dept Comp Sci & Artificial Intelligence, Granada, Spain
[3] Univ Estado Rio De Janeiro, IPRJ UERJ, Dept Mech Engn, Rio de Janeiro, RJ, Brazil
关键词
Kernel methods; Kernel functions; Fault detection; Data preprocessing; Kernel parameter; Objective functions; INDEPENDENT COMPONENT ANALYSIS; SUPPORT VECTOR MACHINE; FISHER DISCRIMINANT-ANALYSIS; PARTICLE SWARM OPTIMIZATION; CANONICAL VARIATE ANALYSIS; FEATURE-EXTRACTION; NONLINEAR PROCESSES; DATA-DRIVEN; DIAGNOSIS; KPCA;
D O I
10.1016/j.isatra.2021.08.040
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays, how to select the kernel function and their parameters for ensuring high-performance indicators in fault diagnosis applications remains as two open research issues. This paper provides a comprehensive literature survey of kernel-preprocessing methods in condition monitoring tasks, with emphasis on the procedures for selecting their parameters. Accordingly, twenty kernel optimization criteria and sixteen kernel functions are analyzed. A kernel evaluation framework is further provided for helping in the selection and adjustment of kernel functions. The proposal is validated via a KPCA-based monitoring scheme and two well-known benchmark processes. (C) 2021 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:259 / 272
页数:14
相关论文
共 131 条
[1]  
Acerbi L, 2017, ADV NEUR IN, V30
[2]   New empirical nonparametric kernels for support vector machine classification [J].
Al Daoud, Essam ;
Turabieh, Hamza .
APPLIED SOFT COMPUTING, 2013, 13 (04) :1759-1765
[3]   Analysis and generalization of fault diagnosis methods for process monitoring [J].
Alcala, Carlos F. ;
Qin, S. Joe .
JOURNAL OF PROCESS CONTROL, 2011, 21 (03) :322-330
[4]   A review of machine learning kernel methods in statistical process monitoring [J].
Apsemidis, Anastasios ;
Psarakis, Stelios ;
Moguerza, Javier M. .
COMPUTERS & INDUSTRIAL ENGINEERING, 2020, 142
[5]   Research on feature selection for rotating machinery based on Supervision Kernel Entropy Component Analysis with Whale Optimization Algorithm [J].
Bai, Lili ;
Han, Zhennan ;
Ren, Jiajun ;
Qin, Xiaofeng .
APPLIED SOFT COMPUTING, 2020, 92
[6]  
Bao Ma, 2014, Advanced Materials Research, V971-973, P476, DOI 10.4028/www.scientific.net/AMR.971-973.476
[7]   Learning by kernel polarization [J].
Baram, Y .
NEURAL COMPUTATION, 2005, 17 (06) :1264-1275
[8]   Variable window adaptive Kernel Principal Component Analysis for nonlinear nonstationary process monitoring [J].
Ben Khediri, Issam ;
Limam, Mohamed ;
Weihs, Claus .
COMPUTERS & INDUSTRIAL ENGINEERING, 2011, 61 (03) :437-446
[9]   New reduced kernel PCA for fault detection and diagnosis in cement rotary kiln [J].
Bencheikh, F. ;
Harkat, M. F. ;
Kouadri, A. ;
Bensmail, A. .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2020, 204
[10]   Optimizing kernel methods to reduce dimensionality in fault diagnosis of industrial systems [J].
Bernal de lazaro, Jose Manuel ;
Prieto Moreno, Alberto ;
Llanes Santiago, Orestes ;
da Silva Neto, Antonio Jose .
COMPUTERS & INDUSTRIAL ENGINEERING, 2015, 87 :140-149