Developing optimal energy management of energy hub in the presence of stochastic renewable energy resources

被引:84
|
作者
Shahrabi, Elnaz [1 ,2 ]
Hakimi, Seyed Mehdi [1 ,2 ]
Hasankhani, Arezoo [3 ]
Derakhshan, Ghasem [1 ,2 ]
Abdi, Babak [1 ,2 ]
机构
[1] Islamic Azad Univ, Elect Engn Dept, Damavand Branch, Damavand, Iran
[2] Islamic Azad Univ, Renewable Energy Res Ctr, Damavand Branch, Damavand, Iran
[3] Florida Atlantic Univ, Dept Comp & Elect Engn & Comp Sci, Boca Raton, FL 33431 USA
关键词
Energy hub; Energy storage system; Renewable energy system; Optimal planning and scheduling; ECHO STATE NETWORK; WIND-SPEED; OPTIMIZATION; SYSTEM; OPERATION; STRATEGY; PENETRATION; CHALLENGES; MARKET; UNITS;
D O I
10.1016/j.segan.2020.100428
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Increasing the implementation of distributed generation and introducing multi-carrier energy systems highlight the need for energy hub systems. The energy hub is a new idea implemented in multi carrier energy systems, sending, receiving, and storing different energy types. Therefore, the present paper proposes an improved energy hub consisting of different types of renewable energy-based DG units considering electricity and heating storage systems, which models the system's operation and planning aspects. Furthermore, optimal planning and scheduling of multi-carrier energy hub system is modeled considering the stochastic behavior of wind and photovoltaic units. The operation section's main challenge is determining the optimal interaction between different resources for supplying other loads in the system. The presented model is solved using a robust method based on a Quantum Particle Swarm Optimization (QPSO) approach to minimize the energy hub system's total cost. The minimization of fuel consumption and pollutant emissions due to implementing the residential energy hub's thermal storage system is evaluated. Simulation results show that the amount of consumed natural gas reduces by 48% after using CHP units produced heat to supply heating and cooling loads. After installing CHP and thermal storages in the energy hub system, the amount of CO2 has reduced by about 904 tons during a year. It can be concluded that the produced power of CHP is at the highest, which is equal to 61%, as it can generate electricity at all times during the day. Moreover, to evaluate the efficiency of the proposed methodology, the Genetic Algorithm (GA) and PSO algorithm are also implemented for optimization of the mentioned energy hub system. The performance of the mentioned algorithms is compared with each other, and the results depicted that the QPSO algorithm is the best and the convergence speed and global search ability of the QPSO algorithm are significantly better than PSO and GA algorithms The obtained numerical results verify the efficiency of the proposed method in the optimal scheduling and planning of the energy hub system in the presence of stochastic renewable energy systems. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Optimal stochastic-probability management of resources and energy storage in energy hub considering demand response programs and uncertainties
    Dalimi-Asl, Abbas
    Javadi, Shahram
    Ahmarinejad, Amir
    Rabbanifar, Payam
    SUSTAINABLE CITIES AND SOCIETY, 2023, 99
  • [2] Development of Monte-Carlo-based stochastic scenarios to improve uncertainty modelling for optimal energy management of a renewable energy hub
    Tavakoli, Alireza
    Karimi, Ali
    IET RENEWABLE POWER GENERATION, 2023, 17 (05) : 1139 - 1164
  • [3] Risk-based stochastic scheduling of energy hub system in the presence of heating network and thermal energy management
    Tian, Man-Wen
    Ebadi, Abdol Ghaffar
    Jermsittiparsert, Kittisak
    Kadyrov, Marsel
    Ponomarev, Andrei
    Javanshir, Nima
    Nojavan, Sayyad
    APPLIED THERMAL ENGINEERING, 2019, 159
  • [4] Optimal Energy Management for Cooperative Microgrids With Renewable Energy Resources
    Duong Tung Nguyen
    Le, Long Bao
    2013 IEEE INTERNATIONAL CONFERENCE ON SMART GRID COMMUNICATIONS (SMARTGRIDCOMM), 2013, : 678 - 683
  • [5] Stochastic energy investment in off-grid renewable energy hub for autonomous building
    Hemmati, Reza
    IET RENEWABLE POWER GENERATION, 2019, 13 (12) : 2232 - 2239
  • [6] Optimal stochastic energy management of electrical railway systems considering renewable energy resources' uncertainties and interactions with utility grid
    Ehteshami, Hossein
    Hashemi-Dezaki, Hamed
    Javadi, Saeid
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (02) : 578 - 599
  • [7] Electric, Thermal and Cooling Energy Management of a Microgrid Incorporating Renewable Energy Hub
    Basu, Mousumi
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2023, : 915 - 932
  • [8] Stochastic effects of ice storage on improvement of an energy hub optimal operation including demand response and renewable energies
    Heidari, A.
    Mortazavi, S. S.
    Bansal, R. C.
    APPLIED ENERGY, 2020, 261
  • [9] Stochastic scheduling of multi-hub energy-water nexus in the presence of renewable resources and responsive loads towards achieving sustainability
    Tabar, Vahid Sohrabi
    Ghassemzadeh, Saeid
    Tohidi, Sajjad
    JOURNAL OF CLEANER PRODUCTION, 2022, 346
  • [10] Optimal energy management of energy hub: A reinforcement learning approach
    Yadollahi, Zahra
    Gharibi, Reza
    Dashti, Rahman
    Jahromi, Amin Torabi
    SUSTAINABLE CITIES AND SOCIETY, 2024, 102