Dynamics of time-reversal-symmetry-breaking vortices in unconventional supercondnctors

被引:10
作者
Wang, ZD
Wang, QH
机构
[1] Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
[2] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
来源
PHYSICAL REVIEW B | 1998年 / 57卷 / 02期
关键词
D O I
10.1103/PhysRevB.57.R724
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Based on a two-component Ginzburg-Landau theory, we find a number of interesting behaviors of vortex dynamics in the time-reversal-symmetry-breaking (T-breaking) regime of the parameter space: (i) Only one of the two types of T-breaking vortices is stable against applied currents at intermediate and high fields; (ii) For these dynamically stable vortices, the equilibrium phase transitions at the lower and/or the upper critical fields may be of first order; (iii) The free vortex flow resistivity of the T-breaking vortices is generally nonlinear, and in the case of (iii) there an resistivity discontinuities at the first-order transitions. The phase diagram of the T-breaking vortices is presented.
引用
收藏
页码:R724 / R727
页数:4
相关论文
共 50 条
[21]   Time-reversal-symmetry Breaking in Turbulence [J].
Jucha, Jennifer ;
Xu, Haitao ;
Pumir, Alain ;
Bodenschatz, Eberhard .
PHYSICAL REVIEW LETTERS, 2014, 113 (05)
[22]   VIOLATION OF TIME-REVERSAL SYMMETRY IN AN UNCONVENTIONAL SUPERCONDUCTOR [J].
ENOMOTO, N ;
MACHIDA, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (07) :2572-2576
[23]   Re1−xMox as an ideal test case of time-reversal symmetry breaking in unconventional superconductors [J].
Tian Shang ;
Christopher Baines ;
Lieh-Jeng Chang ;
Dariusz Jakub Gawryluk ;
Ekaterina Pomjakushina ;
Ming Shi ;
Marisa Medarde ;
Toni Shiroka .
npj Quantum Materials, 5
[24]   Time-reversal-symmetry breaking and unconventional pairing in the noncentrosymmetric superconductor La7Rh3 [J].
Singh, D. ;
Scheurer, M. S. ;
Hillier, A. D. ;
Adroja, D. T. ;
Singh, R. P. .
PHYSICAL REVIEW B, 2020, 102 (13)
[25]   Re1-xMox as an ideal test case of time-reversal symmetry breaking in unconventional superconductors [J].
Shang, Tian ;
Baines, Christopher ;
Chang, Lieh-Jeng ;
Gawryluk, Dariusz Jakub ;
Pomjakushina, Ekaterina ;
Shi, Ming ;
Medarde, Marisa ;
Shiroka, Toni .
NPJ QUANTUM MATERIALS, 2020, 5 (01)
[26]   Vortices and chiral symmetry breaking [J].
Faber, Manfried ;
Höllwieser, Roman .
Acta Physica Polonica B, Proceedings Supplement, 2014, 7 (03) :457-462
[27]   STOCHASTIC SYMMETRY BREAKING OF TIME-REVERSAL INVARIANCE [J].
FOX, RF .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (09) :1187-1189
[28]   Time-reversal symmetry-breaking superconductivity [J].
Ghosh, H .
PHYSICAL REVIEW B, 1999, 59 (05) :3357-3360
[29]   Time-reversal symmetry breaking in a square lattice [J].
Jimenez, Kevin ;
Reslen, Jose .
JOURNAL OF PHYSICS COMMUNICATIONS, 2021, 5 (04)
[30]   SYSTEM WITH TIME-REVERSAL SYMMETRY-BREAKING [J].
SIMON, ME ;
ALIGIA, AA .
PHYSICAL REVIEW B, 1992, 46 (06) :3676-3679