On the absolute mahler measure of polynomials having all zeros in a sector. II

被引:3
作者
Rhin, G [1 ]
Wu, Q [1 ]
机构
[1] Univ Metz, Lab MMAS, CNRS, UMR 7122, F-57045 Metz 1, France
关键词
D O I
10.1090/S0025-5718-04-01676-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let alpha be an algebraic integer of degree d, not 0 or a root of unity, all of whose conjugates alpha(i) are confined to a sector \arg z\ less than or equal to theta. In the paper On the absolute Mahler measure of polynomials having all zeros in a sector, G. Rhin and C. Smyth compute the greatest lower bound c(theta) of the absolute Mahler measure (Pi(i=1)(d) max(1,\alpha(i)\))(1/d) of alpha, for theta belonging to nine subintervals of [0, 2pi/3]. In this paper, we improve the result to thirteen subintervals of [0, pi] and extend some existing subintervals.
引用
收藏
页码:383 / 388
页数:6
相关论文
共 7 条
[1]   The integer Chebyshev problem [J].
Borwein, P ;
Erdelyi, T .
MATHEMATICS OF COMPUTATION, 1996, 65 (214) :661-681
[2]  
Boyd D., 1978, CANAD MATH B, V21, P129
[3]   SPECULATIONS CONCERNING THE RANGE OF MAHLERS MEASURE [J].
BOYD, DW .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1981, 24 (04) :453-469
[4]   On integer Chebyshev polynomials [J].
Habsieger, L ;
Salvy, B .
MATHEMATICS OF COMPUTATION, 1997, 66 (218) :763-770
[5]  
LANGEVIN M, 1986, CR ACAD SCI I-MATH, V303, P523
[6]   ON THE ABSOLUTE MAHLER MEASURE OF POLYNOMIALS HAVING ALL ZEROS IN A SECTOR [J].
RHIN, G ;
SMYTH, C .
MATHEMATICS OF COMPUTATION, 1995, 64 (209) :295-304
[7]  
Wu Q, 2003, MATH COMPUT, V72, P901, DOI 10.1090/S0025-5718-02-01442-4