Solution to HJB Equations with an Elliptic Integro-Differential Operator and Gradient Constraint

被引:2
作者
Moreno-Franco, Harold A. [1 ]
机构
[1] Natl Res Univ Higher Sch Econ, Shabolovka 31,Bldg G, Moscow 115162, Russia
关键词
HJB equation; NIDD problem; Integro differential operator; Stochastic control problem; Levy process; DIVIDEND PROBLEM; IMPULSE CONTROL; RISK; REGULARITY; POLICIES; MODELS;
D O I
10.1007/s00245-016-9397-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to establish existence, regularity and uniqueness results for the solution of a Hamilton-Jacobi-Bellman (HJB) equation, whose operator is an elliptic integro-differential operator. The HJB equation studied in this work arises in singular stochastic control problems where the state process is a controlled d-dimensional L,vy process.
引用
收藏
页码:25 / 60
页数:36
相关论文
共 41 条
[21]   ANALYSIS OF HAMILTON-JACOBI-BELLMAN EQUATIONS ARISING IN STOCHASTIC SINGULAR CONTROL [J].
Hynd, Ryan .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2013, 19 (01) :112-128
[22]   The eigenvalue problem of singular ergodic control [J].
Hynd, Ryan .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (05) :649-682
[23]   BOUNDARY-REGULARITY AND UNIQUENESS FOR AN ELLIPTIC EQUATION WITH GRADIENT CONSTRAINT [J].
ISHII, H ;
KOIKE, S .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1983, 8 (04) :317-346
[24]   Optimal policies for n-dimensional singular stochastic control problems part I:: The Skorokhod problem [J].
Kruk, L .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (05) :1603-1622
[25]   Distributional study of De Finetti's dividend problem for a general Levy insurance risk process [J].
Kyprianou, A. E. ;
Palmowski, Z. .
JOURNAL OF APPLIED PROBABILITY, 2007, 44 (02) :428-443
[26]  
Ladyzhenskaya O. A, 1986, LINEAR QUASILINEAR E, V46
[28]   A REMARK ON BONY MAXIMUM PRINCIPLE [J].
LIONS, PL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :503-508
[29]   ON OPTIMALITY OF THE BARRIER STRATEGY IN DE FINETTI'S DIVIDEND PROBLEM FOR SPECTRALLY NEGATIVE LEVY PROCESSES [J].
Loeffen, R. L. .
ANNALS OF APPLIED PROBABILITY, 2008, 18 (05) :1669-1680
[30]   Singular ergodic control for multidimensional Gaussian-Poisson processes [J].
Menaldi, J. L. ;
Robin, M. .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2013, 85 (04) :682-691