Solution to HJB Equations with an Elliptic Integro-Differential Operator and Gradient Constraint

被引:2
作者
Moreno-Franco, Harold A. [1 ]
机构
[1] Natl Res Univ Higher Sch Econ, Shabolovka 31,Bldg G, Moscow 115162, Russia
关键词
HJB equation; NIDD problem; Integro differential operator; Stochastic control problem; Levy process; DIVIDEND PROBLEM; IMPULSE CONTROL; RISK; REGULARITY; POLICIES; MODELS;
D O I
10.1007/s00245-016-9397-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to establish existence, regularity and uniqueness results for the solution of a Hamilton-Jacobi-Bellman (HJB) equation, whose operator is an elliptic integro-differential operator. The HJB equation studied in this work arises in singular stochastic control problems where the state process is a controlled d-dimensional L,vy process.
引用
收藏
页码:25 / 60
页数:36
相关论文
共 41 条
[1]  
[Anonymous], 1999, CAMBRIDGE STUD ADV M
[2]  
[Anonymous], 1998, CLASSICS MATH
[3]  
[Anonymous], 2003, SOBOLEV SPACES
[4]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[5]  
[Anonymous], 2014, INTRO LECT
[6]  
[Anonymous], METHODES MATH INFORM
[7]  
[Anonymous], 2006, CONTROLLED MARKOV PR
[8]  
[Anonymous], 1984, RICERCHE MAT
[9]   Controlled diffusion models for optimal dividend pay-out [J].
Asmussen, S ;
Taksar, M .
INSURANCE MATHEMATICS & ECONOMICS, 1997, 20 (01) :1-15
[10]  
Asmussen S.R., 2000, Financ. Stoch, V4, P299, DOI [10.1007/s007800050075, DOI 10.1007/S007800050075]