Hamilton Cycles in n-Extendable Bipartite Graphs

被引:0
|
作者
Li, Yueping [1 ]
Lou, Dingjun [1 ]
机构
[1] Sun Yat Sen Univ, Dept Comp Sci, Guangzhou 510275, Guangdong, Peoples R China
关键词
n-extendable graph; bipartite graph; Hamiltonian cycle;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a bipartite graph with bipartition (X,Y). In this paper, it is proved that if G is an n-extendable bipartite graph with n >= nu/6, then G is Hamiltonian. The bound for n is sharp.
引用
收藏
页码:3 / 18
页数:16
相关论文
共 50 条
  • [1] Hamilton Paths in n-Extendable Bipartite Graphs
    Gan, Zhiyong
    Lou, Dingjun
    ARS COMBINATORIA, 2021, 154 : 3 - 21
  • [2] Long Cycles in n-Extendable Bipartite Graphs
    Gan, Zhiyong
    Lou, Dingjun
    ARS COMBINATORIA, 2019, 144 : 91 - 106
  • [3] On defect n-extendable bipartite graphs
    Wen, Xuelian
    IMECS 2007: International Multiconference of Engineers and Computer Scientists, Vols I and II, 2007, : 2347 - 2352
  • [4] Hamiltonian cycles in n-extendable graphs
    Kawarabayashi, K
    Ota, K
    Saito, A
    JOURNAL OF GRAPH THEORY, 2002, 40 (02) : 75 - 82
  • [5] A novel characterization of n-extendable bipartite graphs
    Lin, Hong
    Guo, Xiaofeng
    ARS COMBINATORIA, 2009, 91 : 353 - 362
  • [6] On the structure of minimally n-extendable bipartite graphs
    Lou, DJ
    DISCRETE MATHEMATICS, 1999, 202 (1-3) : 173 - 181
  • [7] Characterizing minimally n-extendable bipartite graphs
    Lou, Dingjun
    DISCRETE MATHEMATICS, 2008, 308 (11) : 2269 - 2272
  • [8] CONSTRUCTION CHARACTERIZATIONS FOR DEFECT n-EXTENDABLE BIPARTITE GRAPHS
    Wen, Xuelian
    Yang, Zihui
    Zhang, Zan-Bo
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2009, 6 (03) : 353 - 360
  • [9] Characterizing defect n-extendable bipartite graphs with different connectivities
    Wen, Xuelian
    Lou, Dingjun
    DISCRETE MATHEMATICS, 2007, 307 (15) : 1898 - 1908
  • [10] ON N-EXTENDABLE GRAPHS
    PLUMMER, MD
    DISCRETE MATHEMATICS, 1980, 31 (02) : 201 - 210