THE CIRCULAR LAW FOR RANDOM MATRICES

被引:108
作者
Gotze, Friedrich [1 ]
Tikhomirov, Alexander [2 ]
机构
[1] Univ Bielefeld, Fac Math, D-4800 Bielefeld, Germany
[2] Sankt Peterburg State Univ, Fac Math & Mech, St Petersburg, Russia
关键词
Circular law; random matrices; INVERTIBILITY;
D O I
10.1214/09.AOP522
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the joint distribution of real and imaginary parts of eigen-values of random matrices with Independent entries with mean zero and unit variance We prove the convergence of this distribution to the uniform distribution on the unit disc without assumptions on the existence of a density for the distribution of entries We assume that the entries have a finite moment of order larger than two and consider the case of sparse matrices The results are based on previous work of Bai, Rudelson and the authors extending those results to a larger class of sparse matrices
引用
收藏
页码:1444 / 1491
页数:48
相关论文
共 24 条
[11]  
Horn R.A., 2012, Matrix analysis, DOI [10.1017/CBO9780511810817, DOI 10.1017/CBO9780511810817]
[12]   Smallest singular value of random matrices and geometry of random polytopes [J].
Litvak, AE ;
Pajor, A ;
Rudelson, M ;
Tomczak-Jaegermann, N .
ADVANCES IN MATHEMATICS, 2005, 195 (02) :491-523
[13]  
Mehta M. L., 2004, Random Matrices, V3rd
[14]   Circular law, extreme singular values and potential theory [J].
Pan, Guangming ;
Zhou, Wang .
JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (03) :645-656
[15]  
Pastur L., 1973, Uspehi Mat. Nauk, V28, P3
[16]  
Petrov V. V., 1975, Sums of Independent Random Variables
[17]   A limit theorem at the edge of a non-Hermitian random matrix ensemble [J].
Rider, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12) :3401-3409
[18]  
Rider B., 2007, INT MATH RES NOT IMR, V2, P33
[19]   Invertibility of random matrices: norm of the inverse [J].
Rudelson, Mark .
ANNALS OF MATHEMATICS, 2008, 168 (02) :575-600
[20]   The Littlewood-Offord problem and invertibility of random matrices [J].
Rudelson, Mark ;
Vershynin, Roman .
ADVANCES IN MATHEMATICS, 2008, 218 (02) :600-633