THE CIRCULAR LAW FOR RANDOM MATRICES

被引:108
作者
Gotze, Friedrich [1 ]
Tikhomirov, Alexander [2 ]
机构
[1] Univ Bielefeld, Fac Math, D-4800 Bielefeld, Germany
[2] Sankt Peterburg State Univ, Fac Math & Mech, St Petersburg, Russia
关键词
Circular law; random matrices; INVERTIBILITY;
D O I
10.1214/09.AOP522
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the joint distribution of real and imaginary parts of eigen-values of random matrices with Independent entries with mean zero and unit variance We prove the convergence of this distribution to the uniform distribution on the unit disc without assumptions on the existence of a density for the distribution of entries We assume that the entries have a finite moment of order larger than two and consider the case of sparse matrices The results are based on previous work of Bai, Rudelson and the authors extending those results to a larger class of sparse matrices
引用
收藏
页码:1444 / 1491
页数:48
相关论文
共 24 条
[1]  
[Anonymous], 1985, Theory of Probability & Its Applications, DOI DOI 10.1137/1129095
[2]  
Bai ZD, 1997, ANN PROBAB, V25, P494
[3]  
BAI ZD, 2006, MATH MONOGRAPH SERIE, V2
[4]   THE EDGEWORTH EXPANSION FOR U-STATISTICS OF DEGREE-2 [J].
BICKEL, PJ ;
GOTZE, F ;
VANZWET, WR .
ANNALS OF STATISTICS, 1986, 14 (04) :1463-1484
[6]   Concentration of permanent estimators for certain large matrices [J].
Friedland, S ;
Rider, B ;
Zeitouni, O .
ANNALS OF APPLIED PROBABILITY, 2004, 14 (03) :1559-1576
[7]   STATISTICAL ENSEMBLES OF COMPLEX QUATERNION AND REAL MATRICES [J].
GINIBRE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (03) :440-&
[8]  
GOHBERG IC, 1991, INTRO THEORY LINEAR
[9]   Rate of convergence to the semi-circular law [J].
Götze, F ;
Tikhomirov, A .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 127 (02) :228-276
[10]  
GOTZE F, CIRCULAR LAW