A Process for Hydrogen Production from the Catalytic Decomposition of Formic Acid over Iridium-Palladium Nanoparticles

被引:6
作者
Alshammari, Hamed M. [1 ]
Alotaibi, Mohammad Hayal [2 ]
Aldosari, Obaid F. [3 ]
Alsolami, Abdulellah S. [2 ]
Alotaibi, Nuha A. [2 ]
Alzahrani, Yahya A. [2 ]
Alhumaimess, Mosaed S. [4 ]
Alotaibi, Raja L. [2 ]
El-Hiti, Gamal A. [5 ]
机构
[1] Univ Hail, Fac Sci, Chem Dept, POB 2440, Hail 81451, Saudi Arabia
[2] King Abdulaziz City Sci & Technol KACST, Natl Ctr Petrochem Technol, POB 6086, Riyadh 11442, Saudi Arabia
[3] Majmaah Univ, Coll Sci, Dept Chem, POB 2014, Sakaka 72351, Saudi Arabia
[4] Jouf Univ, Coll Sci, Chem Dept, POB 2014, Sakaka 72351, Saudi Arabia
[5] King Saud Univ, Coll Appl Med Sci, Dept Optometry, Cornea Res Chair, POB 10219, Riyadh 11433, Saudi Arabia
关键词
formic acid decomposition; hydrogen production; renewable energy; green chemistry; catalysis; iridium; palladium; HIGH-PERFORMANCE CATALYSTS; PD NANOPARTICLES; ALLOY NANOPARTICLES; EFFICIENT CATALYST; STORAGE MATERIALS; AMMONIA BORANE; GENERATION; DEHYDROGENATION; ENERGY; NANOCATALYST;
D O I
10.3390/ma14123258
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The present study investigates a process for the selective production of hydrogen from the catalytic decomposition of formic acid in the presence of iridium and iridium-palladium nanoparticles under various conditions. It was found that a loading of 1 wt.% of 2% palladium in the presence of 1% iridium over activated charcoal led to a 43% conversion of formic acid to hydrogen at room temperature after 4 h. Increasing the temperature to 60 degrees C led to further decomposition and an improvement in conversion yield to 63%. Dilution of formic acid from 0.5 to 0.2 M improved the decomposition, reaching conversion to 81%. The reported process could potentially be used in commercial applications.
引用
收藏
页数:12
相关论文
共 53 条
[2]   Pd-Ru/TiO2 catalyst - an active and selective catalyst for furfural hydrogenation [J].
Aldosari, Obaid F. ;
Iqbal, Sarwat ;
Miedziak, Peter J. ;
Brett, Gemma L. ;
Jones, Daniel R. ;
Liu, Xi ;
Edwards, Jennifer K. ;
Morgan, David J. ;
Knight, David K. ;
Hutchings, Graham J. .
CATALYSIS SCIENCE & TECHNOLOGY, 2016, 6 (01) :234-242
[3]   Ligand design for functional metal-organic frameworks [J].
Almeida Paz, Filipe A. ;
Klinowski, Jacek ;
Vilela, Sergio M. F. ;
Tome, Joao P. C. ;
Cavaleiro, Jose A. S. ;
Rocha, Joao .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (03) :1088-1110
[4]  
[Anonymous], 2009, ULLMANNS ENCY IND CH, DOI DOI 10.1002/14356007.A05_313.PUB2
[5]   Hydrogen as fuel: a critical technology? [J].
Baykara, SZ .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2005, 30 (05) :545-553
[6]   Carbon capture and storage update [J].
Boot-Handford, M. E. ;
Abanades, J. C. ;
Anthony, E. J. ;
Blunt, M. J. ;
Brandani, S. ;
Mac Dowell, N. ;
Fernandez, J. R. ;
Ferrari, M. -C. ;
Gross, R. ;
Hallett, J. P. ;
Haszeldine, R. S. ;
Heptonstall, P. ;
Lyngfelt, A. ;
Makuch, Z. ;
Mangano, E. ;
Porter, R. T. J. ;
Pourkashanian, M. ;
Rochelle, G. T. ;
Shah, N. ;
Yao, J. G. ;
Fennell, P. S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :130-189
[7]  
Bowker M., 1998, BASIS APPL HETEROGEN
[8]   Pd-MnOx nanoparticles dispersed on amine-grafted silica: Highly efficient nanocatalyst for hydrogen production from additive-free dehydrogenation of formic acid under mild conditions [J].
Bulut, Ahmet ;
Yurderi, Mehmet ;
Karatas, Yasar ;
Zahmakiran, Mehmet ;
Kivrak, Hilal ;
Gulcan, Mehmet ;
Kaya, Murat .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 164 :324-333
[9]   AgPd nanoparticles supported on MIL-101 as high performance catalysts for catalytic dehydrogenation of formic acid [J].
Dai, Hongmei ;
Cao, Nan ;
Yang, Lan ;
Su, Jun ;
Luo, Wei ;
Cheng, Gongzhen .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (29) :11060-11064
[10]   Pd nanoparticles supported on MIL-101 as high-performance catalysts for catalytic hydrolysis of ammonia borane [J].
Dai, Hongmei ;
Su, Jun ;
Hu, Kai ;
Luo, Wei ;
Cheng, Gongzhen .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (10) :4947-4953