ON THE DYNAMICS OF 3D ELECTRIFIED FALLING FILMS

被引:2
|
作者
He, Jiao [1 ]
Granero-Belinchon, Rafael [2 ]
机构
[1] Univ Evry & Paris Saclay, Lab Math & Modelisat Evry, Evry, France
[2] Univ Cantabria, Dept Matemat Estadist & Comp, Santander, Spain
关键词
Kuramoto-Sivashinsky equation; global wellposedness; analyticity; global attractor; upper bound on the number of spatial oscillations; KURAMOTO-SIVASHINSKY EQUATIONS; GEVREY CLASS REGULARITY; GLOBAL ATTRACTING SET; NON-LINEAR ANALYSIS; HYDRODYNAMIC INSTABILITY; NONLINEAR SATURATION; WAVE EVOLUTION; LAMINAR FLAMES; ANALYTICITY; STABILITY;
D O I
10.3934/dcds.2021027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider a non-local variant of the Kuramoto-Sivashinsky equation in three dimensions (2D interface). Besides showing the global wellposedness of this equation we also obtain some qualitative properties of the solutions. In particular, we prove that the solutions become analytic in the spatial variable for positive time, the existence of a compact global attractor and an upper bound on the number of spatial oscillations of the solutions. We observe that such a bound is particularly interesting due to the chaotic behavior of the solutions.
引用
收藏
页码:4041 / 4064
页数:24
相关论文
共 50 条
  • [22] On the dynamics of 3D nonlocal solids
    Russillo, Andrea Francesco
    Failla, Giuseppe
    Barretta, Raffaele
    de Sciarra, Francesco Marotti
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2022, 180
  • [23] THE 3D DYNAMICS OF BARRED GALAXIES
    PFENNIGER, D
    ASTRONOMY & ASTROPHYSICS, 1984, 134 (02): : 373 - 386
  • [24] Rupture dynamics in 3D: a review
    Madariaga, R
    Peyrat, S
    Olsen, KB
    PROBLEMS IN GEOPHYSICS FOR THE NEW MILLENNIUM, 2000, : 89 - 110
  • [25] Nonlinear Dynamics of the 3D Pendulum
    Nalin A. Chaturvedi
    Taeyoung Lee
    Melvin Leok
    N. Harris McClamroch
    Journal of Nonlinear Science, 2011, 21 : 3 - 32
  • [26] Nonlinear Dynamics of the 3D Pendulum
    Chaturvedi, Nalin A.
    Lee, Taeyoung
    Leok, Melvin
    McClamroch, N. Harris
    JOURNAL OF NONLINEAR SCIENCE, 2011, 21 (01) : 3 - 32
  • [27] The dynamics of a 3D printed microrotor
    Pinhata, Gustavo M.
    Nicoletti, Rodrigo
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 121 (3-4): : 2803 - 2814
  • [28] Dynamics and control of a 3D pendulum
    Shen, JL
    Sanyal, AK
    Chaturvedi, NA
    Bernstein, D
    McClamroch, H
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 323 - 328
  • [29] Soliton dynamics in 3D ferromagnets
    Ioannidou, T
    Sutcliffe, PM
    PHYSICA D, 2001, 150 (1-2): : 118 - 126
  • [30] The dynamics of a 3D printed microrotor
    Gustavo M. Pinhata
    Rodrigo Nicoletti
    The International Journal of Advanced Manufacturing Technology, 2022, 121 : 2803 - 2814