Kuramoto-Sivashinsky equation;
global wellposedness;
analyticity;
global attractor;
upper bound on the number of spatial oscillations;
KURAMOTO-SIVASHINSKY EQUATIONS;
GEVREY CLASS REGULARITY;
GLOBAL ATTRACTING SET;
NON-LINEAR ANALYSIS;
HYDRODYNAMIC INSTABILITY;
NONLINEAR SATURATION;
WAVE EVOLUTION;
LAMINAR FLAMES;
ANALYTICITY;
STABILITY;
D O I:
10.3934/dcds.2021027
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this article, we consider a non-local variant of the Kuramoto-Sivashinsky equation in three dimensions (2D interface). Besides showing the global wellposedness of this equation we also obtain some qualitative properties of the solutions. In particular, we prove that the solutions become analytic in the spatial variable for positive time, the existence of a compact global attractor and an upper bound on the number of spatial oscillations of the solutions. We observe that such a bound is particularly interesting due to the chaotic behavior of the solutions.
机构:
Tokyo Inst Technol, Global Sci Informat & Comp Ctr, Meguro Ku, Tokyo 1528550, JapanTokyo Inst Technol, Global Sci Informat & Comp Ctr, Meguro Ku, Tokyo 1528550, Japan
机构:
Imperial Coll London, Dept Math, South Kensington Campus, London SW7 2AZ, EnglandImperial Coll London, Dept Math, South Kensington Campus, London SW7 2AZ, England
Tomlin, R. J.
Papageorgiou, D. T.
论文数: 0引用数: 0
h-index: 0
机构:
Imperial Coll London, Dept Math, South Kensington Campus, London SW7 2AZ, EnglandImperial Coll London, Dept Math, South Kensington Campus, London SW7 2AZ, England
Papageorgiou, D. T.
Pavliotis, G. A.
论文数: 0引用数: 0
h-index: 0
机构:
Imperial Coll London, Dept Math, South Kensington Campus, London SW7 2AZ, EnglandImperial Coll London, Dept Math, South Kensington Campus, London SW7 2AZ, England
机构:
Tokyo Inst Technol, Nucl Reactors Res Lab, Meguro Ku, Tokyo 1528550, JapanTokyo Inst Technol, Nucl Reactors Res Lab, Meguro Ku, Tokyo 1528550, Japan