On degenerate generalized Fubini polynomials

被引:5
作者
Kim, Taekyun [1 ]
Kim, Dae San [2 ]
Lee, Hyunseok [1 ]
Kwon, Jonkyum [3 ]
机构
[1] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[2] Sogang Univ, Dept Math, Seoul 121742, South Korea
[3] Gyeongsang Natl Univ, Dept Math Educ, Jinju 52828, South Korea
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 07期
关键词
egenerate generalized Fubini polynomials; degenerate Eulerian polynomials; degenerate Frobenius-Euler polynomials; geometric random variable; IDENTITIES;
D O I
10.3934/math.2022679
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The n-th Fubini number counts the number of ordered partitions of a set with n elements and is the number of possible ways to write the Fubini formula for a summation of integration of order n. Further, Fubini polynomials are natural extensions of the Fubini numbers. Recently, the generalized Fubini polynomials were introduced by Sebaoui-Laissaoui-Guettai-Rahmani, as one of the variants of the Fubini polynomials. The aim of this paper is to study the degenerate generalized Fubini polynomials, which are a degenerate version of those polynomials, and to find an application of them to probability theory in connection with geometric random variable.
引用
收藏
页码:12227 / 12240
页数:14
相关论文
共 19 条
  • [1] ARACI SERKAN, 2021, Advanced Studies in Contemporary Mathematics, V31, P195
  • [2] Carlitz L., 1979, UTILL MATHAMETICS, V15, P51
  • [3] Comtet L, 1974, Advanced combinatorics, the art of finite and infinite expansions
  • [4] Khan W.A., 2020, Int. J. Appl. Comput. Math, V6, P87, DOI [10.1007/s40819-020-00840-3, DOI 10.1007/S40819-020-00840-3]
  • [5] IDENTITIES AND RELATIONS FOR FUBINI TYPE NUMBERS AND POLYNOMIALS VIA GENERATING FUNCTIONS AND p-ADIC INTEGRAL APPROACH
    Kilar, Neslihan
    Simsek, Yilmaz
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2019, 106 (120): : 113 - 123
  • [6] A Note on a New Type of Degenerate Bernoulli Numbers
    Kim, D. S.
    Kim, T.
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2020, 27 (02) : 227 - 235
  • [7] Kim Dae San, 2018, [Proceedings of the Jangjeon Mathematical Society, Proceedings of the Jangjeon Mathematical Society(장전수학회 논문집)], V21, P5, DOI 10.17777/pjms2017.21.1.5
  • [8] 김택연, 2017, [Proceedings of the Jangjeon Mathematical Society, Proceedings of the Jangjeon Mathematical Society(장전수학회 논문집)], V20, P521
  • [9] 김택연, 2017, [Proceedings of the Jangjeon Mathematical Society, Proceedings of the Jangjeon Mathematical Society(장전수학회 논문집)], V20, P337
  • [10] On Some Degenerate Differential and Degenerate Difference Operators
    Kim, T.
    Kim, D. S.
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2022, 29 (01) : 37 - 46