A Numerical Scheme for the Compressible Low-Mach Number Regime of Ideal Fluid Dynamics

被引:36
作者
Barsukow, Wasilij [1 ]
Edelmann, Philipp V. F. [2 ]
Klingenberg, Christian [1 ]
Miczek, Fabian [1 ]
Roepke, Friedrich K. [2 ]
机构
[1] Wurzburg Univ, Inst Math, Emil Fischer Str 40, D-97074 Wurzburg, Germany
[2] Heidelberg Inst Theoret Studies, Schloss Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany
关键词
Compressible Euler equations; Low Mach number; Asymptotic preserving; Flux preconditioning; NAVIER-STOKES EQUATIONS; INCOMPRESSIBLE LIMIT; ISENTROPIC EULER; SINGULAR LIMITS; UPWIND SCHEMES; SPEED SCHEME; SIMULATIONS; TURBULENCE; BEHAVIOR; FLOW;
D O I
10.1007/s10915-017-0372-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the Roe solver a new technique that allows to correctly represent low Mach number flows with a discretization of the compressible Euler equations was proposed in Miczek et al. (Astron Astrophys 576:A50, 2015). We analyze properties of this scheme and demonstrate that its limit yields a discretization of the continuous limit system. Furthermore we perform a linear stability analysis for the case of explicit time integration and study the performance of the scheme under implicit time integration via the evolution of its condition number. A numerical implementation demonstrates the capabilities of the scheme on the example of the Gresho vortex which can be accurately followed down to Mach numbers of .
引用
收藏
页码:623 / 646
页数:24
相关论文
共 35 条
[1]  
Asano K., 1987, Japan J Appl Math, V4, P455, DOI [10.1007/BF03167815, DOI 10.1007/BF03167815]
[2]   An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes [J].
Chalons, Christophe ;
Girardin, Mathieu ;
Kokh, Samuel .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 20 (01) :188-233
[3]   An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations [J].
Cordier, Floraine ;
Degond, Pierre ;
Kumbaro, Anela .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (17) :5685-5704
[4]   All Speed Scheme for the Low Mach Number Limit of the Isentropic Euler Equations [J].
Degond, Pierre ;
Tang, Min .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2011, 10 (01) :1-31
[5]   Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number [J].
Dellacherie, Stephane .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (04) :978-1016
[6]  
Dellacherie S, 2009, ALGORITMY 2009: 18TH CONFERENCE ON SCIENTIFIC COMPUTING, P71
[7]   Simulation of transition and turbulence decay in the Taylor-Green vortex [J].
Drikakis, Dimitris ;
Fureby, Christer ;
Grinstein, Fernando F. ;
Youngs, David .
JOURNAL OF TURBULENCE, 2007, 8 (20) :1-12
[8]   MOTION OF SLIGHTLY COMPRESSIBLE FLUIDS VIEWED AS A MOTION WITH STRONG CONSTRAINING FORCE [J].
EBIN, DG .
ANNALS OF MATHEMATICS, 1977, 105 (01) :141-200
[9]   AN EXAMINATION OF FORCING IN DIRECT NUMERICAL SIMULATIONS OF TURBULENCE [J].
ESWARAN, V ;
POPE, SB .
COMPUTERS & FLUIDS, 1988, 16 (03) :257-278
[10]   ON THE THEORY OF SEMIIMPLICIT PROJECTION METHODS FOR VISCOUS INCOMPRESSIBLE-FLOW AND ITS IMPLEMENTATION VIA A FINITE-ELEMENT METHOD THAT ALSO INTRODUCES A NEARLY CONSISTENT MASS MATRIX .2. IMPLEMENTATION [J].
GRESHO, PM ;
CHAN, ST .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1990, 11 (05) :621-659