On the groups of units of finite commutative chain rings

被引:22
作者
Hou, XD [1 ]
Leung, KH
Ma, SL
机构
[1] Wright State Univ, Dept Math & Stat, Dayton, OH 45435 USA
[2] Natl Univ Singapore, Dept Math, Singapore 119260, Singapore
关键词
D O I
10.1016/S1071-5797(02)00003-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite commutative chain ring is a finite commutative ring whose ideals form a chain. Let R be a finite commutative ring with maximal ideal M and characteristic p(n) such that R/M congruent to GF(p(r)) and pR= M-e, eless than or equal tos, where s is the nilpotency of M. When (p-1)inverted iotae, the structure of the group of units R-x of R has been determined; it only depends on the parameters p, n, r, e, s. In this paper, we give an algorithmic method which allows us to compute the structure of R-x when (p-1)\e; such a structure not only depends on the parameters p, n, r, e, s, but also on the Eisenstein polynomial which defines R as an extension over the Galois ring GR(p(n), r). In the case (p-1)inverted iotae, we strengthen the known result by listing a set of linearly independent generators for R-x. In the case (p-1)\e but p inverted iota e, we determine the structure of R-x explicitly. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:20 / 38
页数:19
相关论文
共 21 条
[1]   THE DETERMINATION OF THE GROUP OF AUTOMORPHISMS OF A FINITE CHAIN RING OF CHARACTERISTIC-P [J].
ALKHAMEES, Y .
QUARTERLY JOURNAL OF MATHEMATICS, 1991, 42 (168) :387-391
[2]  
ALKHAMEES Y, 1995, PANAMER MATH J, V5, P75
[3]  
Artman B., 1976, J GEOM, V7, P175, DOI [10.1007/BF01918989, DOI 10.1007/BF01918989]
[4]   ON CERTAIN CHAIN RINGS AND THEIR GROUPS OF UNITS [J].
AYOUB, CW .
COMMUNICATIONS IN ALGEBRA, 1981, 9 (03) :323-338
[5]   ENUMERATION OF FINITE COMMUTATIVE CHAIN RINGS [J].
CLARK, WE ;
LIANG, JJ .
JOURNAL OF ALGEBRA, 1973, 27 (03) :445-453
[6]   Gray isometries for finite chain rings and a nonlinear ternary (36,312,15) code [J].
Greferath, M ;
Schmidt, SE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) :2522-2524
[7]   Cyclic codes over finite rings [J].
Greferath, M .
DISCRETE MATHEMATICS, 1997, 177 (1-3) :273-277
[8]  
GREFERATH M, 2001, MITT MATH SEM GIESSE, V245
[9]  
HOU X, ENUMERATION ISOMORPH
[10]  
Hou X.-D., 1998, Finite Fields and their Applications, V4, P55, DOI 10.1006/ffta.1997.0200