Immunomodulatory roles and novel applications of bacterial membrane vesicles

被引:45
作者
Gilmore, William J. [1 ,2 ]
Johnston, Ella L. [1 ,2 ]
Zavan, Lauren [1 ,2 ]
Bitto, Natalie J. [1 ,2 ]
Kaparakis-Liaskos, Maria [1 ,2 ]
机构
[1] La Trobe Univ, Dept Physiol Anat & Microbiol, Melbourne, Vic, Australia
[2] La Trobe Univ, Sch Mol Sci, Res Ctr Extracellular Vesicles, Melbourne, Vic, Australia
基金
澳大利亚研究理事会;
关键词
Bacterial membrane vesicles (BMVs); Outer membrane vesicles (OMVs); Membrane vesicles (MVs); Pathogenesis; Immunity; Microbiota; Therapeutic applications; GRAM-POSITIVE BACTERIA; SEROGROUP-B DISEASE; PSEUDOMONAS-AERUGINOSA; STAPHYLOCOCCUS-AUREUS; ESCHERICHIA-COLI; EXTRACELLULAR VESICLES; HAEMOPHILUS-INFLUENZAE; NEISSERIA-MENINGITIDIS; PROTECTIVE IMMUNITY; VIRULENCE FACTORS;
D O I
10.1016/j.molimm.2021.02.027
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bacteria release extracellular vesicles (EVs) known as bacterial membrane vesicles (BMVs) during their normal growth. Gram-negative bacteria produce BMVs termed outer membrane vesicles (OMVs) that are composed of a range of biological cargo and facilitate numerous bacterial functions, including promoting pathogenesis and mediating disease in the host. By contrast, less is understood about BMVs produced by Gram-positive bacteria, which are referred to as membrane vesicles (MVs), however their contribution to mediating bacterial pathogenesis has recently become evident. In this review, we summarise the mechanisms whereby BMVs released by Gram-negative and Gram-positive bacteria are produced, in addition to discussing their key functions in promoting bacterial survival, mediating pathogenesis and modulating host immune responses. Furthermore, we discuss the mechanisms whereby BMVs produced by both commensal and pathogenic organisms can enter host cells and interact with innate immune receptors, in addition to how they modulate host innate and adaptive immunity to promote immunotolerance or drive the onset and progression of disease. Finally, we highlight current and emerging applications of BMVs in vaccine design, biotechnology and cancer therapeutics.
引用
收藏
页码:72 / 85
页数:14
相关论文
共 215 条
[1]   Lytic potential of Lysobacter capsici VKM B-2533T: bacteriolytic enzymes and outer membrane vesicles [J].
Afoshin, A. S. ;
Kudryakova, I., V ;
Borovikova, A. O. ;
Suzina, N. E. ;
Toropygin, I. Yu ;
Shishkova, N. A. ;
Vasilyeva, N. V. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[2]   Membrane vesicles are immunogenic facsimiles of Salmonella typhimurium that potently activate dendritic cells, prime B and T cell responses, and stimulate protective immunity in vivo [J].
Alaniz, Robert C. ;
Deatherage, Brooke L. ;
Lara, Jimmie C. ;
Cookson, Brad T. .
JOURNAL OF IMMUNOLOGY, 2007, 179 (11) :7692-7701
[3]   Outer Membrane Vesicles and Soluble Factors Released by Probiotic Escherichia coil Nissle 1917 and Commensal ECOR63 Enhance Barrier Function by Regulating Expression of Tight Junction Proteins in Intestinal Epithelial Cells [J].
Alvarez, Carina-Shianya ;
Badia, Josefa ;
Bosch, Manel ;
Gimenez, Rosa ;
Baldoma, Laura .
FRONTIERS IN MICROBIOLOGY, 2016, 7
[4]   Antibiotics Stimulate Formation of Vesicles in Staphylococcus aureus in both Phage-Dependent and - Independent Fashions and via Different Routes [J].
Andreoni, Federica ;
Toyofuku, Masanori ;
Menzi, Carmen ;
Kalawong, Ratchara ;
Shambat, Srikanth Mairpady ;
Francois, Patrice ;
Zinkernagel, Annelies S. ;
Eberl, Leo .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2019, 63 (02)
[5]   Antibacterial mode of action of violacein from Chromobacterium violaceum UTM5 against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) [J].
Aruldass, Claira Arul ;
Masalamany, Santhana Raj Louis ;
Venil, Chidambaram Kulandaisamy ;
Ahmad, Wan Azlina .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2018, 25 (06) :5164-5180
[6]   Staphylococcus aureus Membrane-Derived Vesicles Promote Bacterial Virulence and Confer Protective Immunity in Murine Infection Models [J].
Askarian, Fatemeh ;
Lapek, John D., Jr. ;
Dongre, Mitesh ;
Tsai, Chih-Ming ;
Kumaraswamy, Monika ;
Kousha, Armin ;
Valderrama, J. Andres ;
Ludviksen, Judith A. ;
Cavanagh, Jorunn P. ;
Uchiyama, Satoshi ;
Mollnes, Tom E. ;
Gonzalez, David J. ;
Wai, Sun N. ;
Nizet, Victor ;
Johannessen, Mona .
FRONTIERS IN MICROBIOLOGY, 2018, 9
[7]   Scale-up for bulk production of vaccine against meningococcal disease [J].
Baart, Gino J. E. ;
de Jong, Govert ;
Philippi, Marvin ;
van't Riet, Klaas ;
van der Pol, Leo A. ;
Beuvery, E. Coen ;
Tramper, Johannes ;
Martens, Dirk E. .
VACCINE, 2007, 25 (34) :6399-6408
[8]  
Badia J., 2020, BACTERIAL MEMBRANE V, P189
[9]   Bacterial Outer Membrane Vesicles Provide Broad-Spectrum Protection against Influenza Virus Infection via Recruitment and Activation of Macrophages [J].
Bae, Eun-Hye ;
Seo, Sang Hwan ;
Kim, Chang-Ung ;
Jang, Min Seong ;
Song, Min-Suk ;
Lee, Tae-Young ;
Jeong, Yu-Jin ;
Lee, Moo-Seung ;
Park, Jong-Hwan ;
Lee, Pureum ;
Kim, Young Sang ;
Kim, Sang-Hyun ;
Kim, Doo-Jin .
JOURNAL OF INNATE IMMUNITY, 2019, 11 (04) :316-329
[10]   Relationship Between Membrane Vesicles, Extracellular ATP and Biofilm Formation in Antarctic Gram-Negative Bacteria [J].
Baeza, Nicolas ;
Mercade, Elena .
MICROBIAL ECOLOGY, 2021, 81 (03) :645-656