Overexpression of RCc3 improves root system architecture and enhances salt tolerance in rice

被引:19
|
作者
Li, Xingxing [1 ]
Chen, Rongrong [1 ]
Chu, Yanli [1 ]
Huang, Junyang [1 ]
Jin, Liang [1 ]
Wang, Guixue [1 ]
Huang, Junli [1 ]
机构
[1] Chongqing Univ, Bioengn Coll, Minist Educ, Key Lab Biorheol Sci & Technol, 174 Shazheng St, Chongqing 400030, Peoples R China
基金
中国国家自然科学基金;
关键词
Rice; Root; RCc3; Growth; Salt tolerance; FEEDING; 9; BILLION; DROUGHT TOLERANCE; GRAIN-YIELD; ARABIDOPSIS; EXPRESSION; GROWTH; GENE; STRESS; CHALLENGE; CYTOKININ;
D O I
10.1016/j.plaphy.2018.08.008
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Root system architecture represents an underexplored target for improving global crop yields. In this study, we investigated the biological role of the rice root specific gene RCc3 in improving root growth and responses to abiotic stress by overexpressing RCc3 in rice plants. RCc3 was induced by osmotic and heat stress. RCc3 over expression produced pleiotropic phenotypes of improved root system architecture, including increased growth of primary root, adventitious roots and lateral roots at the seedling stage. Further study indicated that auxin accumulation in the root was increased through auxin local biosynthesis and polar auxin transport in RCc3 overexpression lines. At maturity, the plant height and panicle traits were also significantly enhanced in over expression plants. Under osmotic and heat stress conditions, the root and shoot growth were less severely inhibited in RCc3 overexpressing transgenic plants than that in wild type plants, and the transcript levels of abiotic stress related genes were significantly increased. Moreover, overexpression of RCc3 remarkably enhanced the tolerance to salt stress, with the elevated activities of antioxidant enzymes. Taken together, the data showed that RCc3 overexpression can improve rice root system, promote plant growth, and enhance plant tolerance to salt stress.
引用
收藏
页码:566 / 576
页数:11
相关论文
共 50 条
  • [21] The overexpression of OsMed 37_6 , a mediator complex subunit enhances salt stress tolerance in rice
    Sutradhar, Monoj
    Singh, Brijesh Kumar
    Samanta, Subhasis
    Ali, Md Nasim
    Mandal, Nirmal
    BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 2024, 58
  • [22] Overexpression of the Arabidopsis AtEm6 gene enhances salt tolerance in transgenic rice cell lines
    Tang, Wei
    Page, Michael
    PLANT CELL TISSUE AND ORGAN CULTURE, 2013, 114 (03) : 339 - 350
  • [23] Overexpression of the Arabidopsis AtEm6 gene enhances salt tolerance in transgenic rice cell lines
    Wei Tang
    Michael Page
    Plant Cell, Tissue and Organ Culture (PCTOC), 2013, 114 : 339 - 350
  • [24] Overexpression of the wheat salt tolerance-related gene TaSC enhances salt tolerance in Arabidopsis
    Huang, Xi
    Zhang, Yang
    Jiao, Bo
    Chen, Guiping
    Huang, Shenghe
    Guo, Feng
    Shen, Yinzhu
    Huang, Zhanjing
    Zhao, Baocun
    JOURNAL OF EXPERIMENTAL BOTANY, 2012, 63 (15) : 5463 - 5473
  • [25] Overexpression of Rice NAC Gene SNAC1 Improves Drought and Salt Tolerance by Enhancing Root Development and Reducing Transpiration Rate in Transgenic Cotton
    Liu, Guanze
    Li, Xuelin
    Jin, Shuangxia
    Liu, Xuyan
    Zhu, Longfu
    Nie, Yichun
    Zhang, Xianlong
    PLOS ONE, 2014, 9 (01):
  • [26] Overexpression of KvCHX Enhances Salt Tolerance in Arabidopsis thaliana Seedlings
    Guo, Yuqi
    Zhu, Chengrong
    Tian, Zengyuan
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2023, 45 (12) : 9692 - 9708
  • [27] Overexpression of OsCASP1 Improves Calcium Tolerance in Rice
    Wang, Zhigang
    Chen, Zhiwei
    Zhang, Xiang
    Wei, Qiuxing
    Xin, Yafeng
    Zhang, Baolei
    Liu, Fuhang
    Xia, Jixing
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (11)
  • [28] Overexpression of Rice Monogalactosyldiacylglycerol Synthase OsMGD Leads to Enhanced Salt Tolerance in Rice
    Hui, Lei
    Liu, Dan
    Wang, Yi
    Li, Shasha
    Yin, Lina
    Wang, Shiwen
    AGRONOMY-BASEL, 2022, 12 (03):
  • [29] Overexpression of OsNAC14 Improves Drought Tolerance in Rice
    Shim, Jae Sung
    Oh, Nuri
    Chung, Pil Joong
    Kim, Youn Shic
    Do Choi, Yang
    Kim, Ju-Kon
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [30] Overexpression of constitutively active mitogen activated protein kinase kinase 6 enhances tolerance to salt stress in rice
    Kundan Kumar
    Alok Krishna Sinha
    Rice, 2013, 6