Overexpression of RCc3 improves root system architecture and enhances salt tolerance in rice

被引:19
|
作者
Li, Xingxing [1 ]
Chen, Rongrong [1 ]
Chu, Yanli [1 ]
Huang, Junyang [1 ]
Jin, Liang [1 ]
Wang, Guixue [1 ]
Huang, Junli [1 ]
机构
[1] Chongqing Univ, Bioengn Coll, Minist Educ, Key Lab Biorheol Sci & Technol, 174 Shazheng St, Chongqing 400030, Peoples R China
基金
中国国家自然科学基金;
关键词
Rice; Root; RCc3; Growth; Salt tolerance; FEEDING; 9; BILLION; DROUGHT TOLERANCE; GRAIN-YIELD; ARABIDOPSIS; EXPRESSION; GROWTH; GENE; STRESS; CHALLENGE; CYTOKININ;
D O I
10.1016/j.plaphy.2018.08.008
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Root system architecture represents an underexplored target for improving global crop yields. In this study, we investigated the biological role of the rice root specific gene RCc3 in improving root growth and responses to abiotic stress by overexpressing RCc3 in rice plants. RCc3 was induced by osmotic and heat stress. RCc3 over expression produced pleiotropic phenotypes of improved root system architecture, including increased growth of primary root, adventitious roots and lateral roots at the seedling stage. Further study indicated that auxin accumulation in the root was increased through auxin local biosynthesis and polar auxin transport in RCc3 overexpression lines. At maturity, the plant height and panicle traits were also significantly enhanced in over expression plants. Under osmotic and heat stress conditions, the root and shoot growth were less severely inhibited in RCc3 overexpressing transgenic plants than that in wild type plants, and the transcript levels of abiotic stress related genes were significantly increased. Moreover, overexpression of RCc3 remarkably enhanced the tolerance to salt stress, with the elevated activities of antioxidant enzymes. Taken together, the data showed that RCc3 overexpression can improve rice root system, promote plant growth, and enhance plant tolerance to salt stress.
引用
收藏
页码:566 / 576
页数:11
相关论文
共 50 条
  • [1] Overexpression of OsDUF868.12 enhances salt tolerance in rice
    Chen, Hao
    Wan, Jiale
    Zhu, Jiali
    Wang, Ziyi
    Mao, Caiyao
    Xu, Wanjing
    Yang, Juan
    Kong, Yijuan
    Zan, Xiaofei
    Chen, Rongjun
    Zhu, Jianqing
    Xu, Zhengjun
    Li, Lihua
    FRONTIERS IN PLANT SCIENCE, 2025, 16
  • [2] Overexpression of AmRosea1 Gene Confers Drought and Salt Tolerance in Rice
    Dou, Mingzhu
    Fan, Sanhong
    Yang, Suxin
    Huang, Rongfeng
    Yu, Huiyun
    Feng, Xianzhong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (01)
  • [3] Overexpression of a microRNA-targeted NAC transcription factor improves drought and salt tolerance in Rice via ABA-mediated pathways
    Jiang, Dagang
    Zhou, Lingyan
    Chen, Weiting
    Ye, Nenghui
    Xia, Jixing
    Zhuang, Chuxiong
    RICE, 2019, 12 (01)
  • [4] Ectopic overexpression of mulberry MnT5H2 enhances melatonin production and salt tolerance in tobacco
    Zhu, Baozhong
    Zheng, Sha
    Fan, Wei
    Zhang, Meirong
    Xia, Zhongqiang
    Chen, Xuefei
    Zhao, Aichun
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [5] Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice
    Zou, Jie
    Liu, Cuifang
    Liu, Ailing
    Zou, Dian
    Chen, Xinbo
    JOURNAL OF PLANT PHYSIOLOGY, 2012, 169 (06) : 628 - 635
  • [6] Overexpression of the Transcription Factor Gene OsSTAP1 Increases Salt Tolerance in Rice
    Wang, Yinxiao
    Wang, Juan
    Zhao, Xiuqin
    Yang, Sheng
    Huang, Liyu
    Du, Fengping
    Li, Zhikang
    Zhao, Xiangqiang
    Fu, Binying
    Wang, Wensheng
    RICE, 2020, 13 (01)
  • [7] Overexpression of MADS-box transcription factor OsMADS25 enhances salt stress tolerance in Rice and Arabidopsis
    Wu, Junyu
    Yu, Chunyan
    Hunag, Linli
    Wu, Minjie
    Liu, Bohan
    Liu, Yihua
    Song, Ge
    Liu, Dongdong
    Gan, Yinbo
    PLANT GROWTH REGULATION, 2020, 90 (01) : 163 - 171
  • [8] Overexpression of PeHKT1;1 Improves Salt Tolerance in Populus
    Xu, Meng
    Chen, Caihui
    Cai, Heng
    Wu, Ling
    GENES, 2018, 9 (10)
  • [9] Overexpression of OsDUF6 increases salt stress tolerance in rice
    Ma, Guangming
    Zhang, Yong
    Li, Xiangyang
    BMC PLANT BIOLOGY, 2024, 24 (01)
  • [10] Overexpression of TaSTRG gene improves salt and drought tolerance in rice
    Zhou, Wei
    Li, Ying
    Zhao, Bao-Cun
    Ge, Rong-Chao
    Shen, Yin-Zhu
    Wang, Gang
    Huang, Zhan-Jing
    JOURNAL OF PLANT PHYSIOLOGY, 2009, 166 (15) : 1660 - 1671