Parsimonious model selection for tissue classification: A DTI study of zebrafish

被引:0
作者
Freidlin, Raisa Z. [1 ,2 ]
Komlosh, Michal E. [3 ]
Loew, Murray H. [2 ]
Basser, Peter J. [3 ]
机构
[1] NIH, TAIS, CBEL, DCB,CIT, Bldg 10, Bethesda, MD 20892 USA
[2] George Washington Univ, ECE Dept, Washington, DC 20052 USA
[3] Natl Inst Hlth, STBB, LIMB, NICHD, Bethesda, MD 20892 USA
来源
MEDICAL IMAGING 2007: IMAGE PROCESSING, PTS 1-3 | 2007年 / 6512卷
关键词
DTI; diffusion tensor; MRI; hierarchical; parsimonious; model selection;
D O I
10.1117/12.708312
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One aim of this work is to investigate the feasibility of using a hierarchy of models to describe diffusion tensor MRI data. Parsimonious model selection criteria are used to choose among different models of diffusion within tissue. Second, based on this information, we assess whether we can perform simultaneous tissue segmentation and classification. The proposed hierarchical framework used for parsimonious model selection is based on the F-test, adapted from Snedecor. Diffusion Magnetic Resonance Microscopy (MRM) provides near-microscopic resolution without relying on a sample's optical transparency for image formation. Diffusion MRM is a noninvasive imagring technique for quantitative analysis of intrinsic features of tissues. Thus, we propose using Diffusion MRM to characterize normal tissue structure in adult zebrafish, and possibly subtle anatomical or structural differences between normals and knockouts. Both numerical phantoms and diffusion weighted image (DWI) data obtained from adult zebrafish are used to test this model selection framework.
引用
收藏
页数:11
相关论文
共 29 条
[1]  
ALEXANDER D, 2005, INTRO COMPUTATIONAL
[2]   Zebrafish hox clusters and vertebrate genome evolution [J].
Amores, A ;
Force, A ;
Yan, YL ;
Joly, L ;
Amemiya, C ;
Fritz, A ;
Ho, RK ;
Langeland, J ;
Prince, V ;
Wang, YL ;
Westerfield, M ;
Ekker, M ;
Postlethwait, JH .
SCIENCE, 1998, 282 (5394) :1711-1714
[3]  
[Anonymous], 1983, Statistical methods
[4]  
BASSER P, 1996, ISMRM 4 SCI M, V2, P1323
[5]   MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
BIOPHYSICAL JOURNAL, 1994, 66 (01) :259-267
[6]   ESTIMATION OF THE EFFECTIVE SELF-DIFFUSION TENSOR FROM THE NMR SPIN-ECHO [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
JOURNAL OF MAGNETIC RESONANCE SERIES B, 1994, 103 (03) :247-254
[7]  
CAREW JD, 2006, ASYMPTOTIC BEHAV NON
[8]   Diffusion tensor imaging in spinal cord: methods and applications - a review [J].
Clark, CA ;
Werring, DJ .
NMR IN BIOMEDICINE, 2002, 15 (7-8) :578-586
[9]   A METHOD FOR MYELIN FIBER ORIENTATION MAPPING USING DIFFUSION-WEIGHTED MR-IMAGES [J].
COREMANS, J ;
LUYPAERT, R ;
VERHELLE, F ;
STADNIK, T ;
OSTEAUX, M .
MAGNETIC RESONANCE IMAGING, 1994, 12 (03) :443-454
[10]   Cardiac diffusion MRI without motion effects [J].
Dou, JG ;
Reese, TG ;
Tseng, WYI ;
Wedeen, VJ .
MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (01) :105-114