Rogue wave solutions for the infinite integrable nonlinear Schrodinger equation hierarchy

被引:32
|
作者
Ankiewicz, A. [1 ]
Akhmediev, N. [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Opt Sci Grp, Canberra, ACT 2600, Australia
基金
澳大利亚研究理事会;
关键词
HEISENBERG SPIN CHAIN; WATER-WAVES;
D O I
10.1103/PhysRevE.96.012219
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present rogue wave solutions of the integrable nonlinear Schrodinger equation hierarchy with an infinite number of higher-order terms. The latter include higher-order dispersion and higher-order nonlinear terms. In particular, we derive the fundamental rogue wave solutions for all orders of the hierarchy, with exact expressions for velocities, phase, and "stretching factors" in the solutions. We also present several examples of exact solutions of second-order rogue waves, including rogue wave triplets.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Classifying the hierarchy of nonlinear-Schrodinger-equation rogue-wave solutions
    Kedziora, David J.
    Ankiewicz, Adrian
    Akhmediev, Nail
    PHYSICAL REVIEW E, 2013, 88 (01):
  • [2] Breather and rogue wave solutions of a generalized nonlinear Schrodinger equation
    Wang, L. H.
    Porsezian, K.
    He, J. S.
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [3] Rogue wave solutions of the nonlinear Schrodinger equation with variable coefficients
    Liu, Changfu
    Li, Yan Yan
    Gao, Meiping
    Wang, Zeping
    Dai, Zhengde
    Wang, Chuanjian
    PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (06): : 1063 - 1072
  • [4] Integrable equations of the infinite nonlinear Schrodinger equation hierarchy with time variable coefficients
    Kedziora, D. J.
    Ankiewicz, A.
    Chowdury, A.
    Akhmediev, N.
    CHAOS, 2015, 25 (10)
  • [5] Rogue wave solutions to the generalized nonlinear Schrodinger equation with variable coefficients
    Zhong, Wei-Ping
    Belic, Milivoj R.
    Huang, Tingwen
    PHYSICAL REVIEW E, 2013, 87 (06):
  • [6] Nonlinear Schrodinger equation: Generalized Darboux transformation and rogue wave solutions
    Guo, Boling
    Ling, Liming
    Liu, Q. P.
    PHYSICAL REVIEW E, 2012, 85 (02):
  • [7] Rogue wave solutions and modulation instability for the mixed nonlinear Schrodinger equation
    Liu, Ya-Hui
    Guo, Rui
    Li, Xing-Lan
    APPLIED MATHEMATICS LETTERS, 2021, 121
  • [8] Rogue wave solutions of the chiral nonlinear Schrodinger equation with modulated coefficients
    Mouassom, L. Fernand
    Mvogo, Alain
    Mbane, C. Biouele
    PRAMANA-JOURNAL OF PHYSICS, 2019, 94 (01):
  • [9] Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrodinger equation
    Feng, Lian-Li
    Zhang, Tian-Tian
    APPLIED MATHEMATICS LETTERS, 2018, 78 : 133 - 140
  • [10] Rogue wave patterns in the nonlinear Schrodinger equation
    Yang, Bo
    Yang, Jianke
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 419