Spectrum of the Hermitian Wilson-Dirac operator for a uniform magnetic field in two dimensions

被引:4
作者
Kurokawa, H [1 ]
Fujiwara, T
机构
[1] Ibaraki Univ, Grad Sch Sci & Engn, Mito, Ibaraki 3108512, Japan
[2] Ibaraki Univ, Dept Math Sci, Mito, Ibaraki 3108512, Japan
来源
PHYSICAL REVIEW D | 2003年 / 67卷 / 02期
关键词
D O I
10.1103/PhysRevD.67.025015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The spectrum of the Hermitian Wilson-Dirac operator is investigated for an arbitrary uniform magnetic field in two dimensions. It can be described by a relativistic analogue of the Harper equation. The index of the overlap Dirac operator is obtained directly from the spectral asymmetry of the relativistic Harper system. It coincides with the topological charge if the field strength is equal to or less than pi/2.
引用
收藏
页数:4
相关论文
共 50 条
[31]   Chiral property of domain-wall fermion from eigenvalues of 4D Wilson-Dirac operator [J].
Aoki, S ;
Aoki, Y ;
Burkhalter, R ;
Ejiri, S ;
Fukugita, M ;
Hashimoto, S ;
Ishizuka, N ;
Iwasaki, Y ;
Izubuchi, T ;
Kanaya, K ;
Kaneko, T ;
Kuramashi, Y ;
Lesk, V ;
Nagai, KI ;
Okawa, M ;
Taniguchi, Y ;
Ukawa, A ;
Yoshié, T .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 :718-720
[32]   Eigenspectrum Calculation of the O(a)-Improved Wilson-Dirac Operator in Lattice QCD Using the Sakurai-Sugiura Method [J].
Suno, Hiroya ;
Nakamura, Yoshifumi ;
Ishikawa, Ken-Ichi ;
Kuramashi, Yoshinobu ;
Futamura, Yasunori ;
Imakura, Akira ;
Sakurai, Tetsuya .
EIGENVALUE PROBLEMS: ALGORITHMS, SOFTWARE AND APPLICATIONS IN PETASCALE COMPUTING (EPASA 2015), 2017, 117 :81-90
[33]   Random matrix theory for the Hermitian Wilson Dirac operator and the chGUE-GUE transition [J].
Akemann, Gernot ;
Nagao, Taro .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (10)
[34]   Random matrix theory for the Hermitian Wilson Dirac operator and the chGUE-GUE transition [J].
Gernot Akemann ;
Taro Nagao .
Journal of High Energy Physics, 2011
[35]   Chiral properties of domain-wall fermions from eigenvalues of 4-dimensional Wilson-Dirac operator [J].
Aoki, S ;
Taniguchi, Y .
PHYSICAL REVIEW D, 2002, 65 (07) :745021-7450221
[36]   Generalized lattice Wilson-Dirac fermions in (1+1) dimensions for atomic quantum simulation and topological phases [J].
Kuno, Yoshihito ;
Ichinose, Ikuo ;
Takahashi, Yoshiro .
SCIENTIFIC REPORTS, 2018, 8
[37]   Spectrum of the U(1) staggered Dirac operator in four dimensions [J].
Berg, BA ;
Markum, H ;
Pullirsch, R ;
Wettig, T .
PHYSICAL REVIEW D, 2001, 63 (01)
[38]   Supersymmetry and eigen energy spectrum of a charged Dirac particle in a uniform constant magnetic field [J].
Jia Wen-Zhi ;
Wang Shun-Jin .
HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2006, 30 (06) :530-536
[39]   Dirac particle polarization in uniform magnetic field [J].
Silenko, AJ .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2001, 51 (03) :219-222
[40]   Uniform susceptibility of classical antiferromagnets in one and two dimensions in a magnetic field [J].
Hinzke, D ;
Nowak, U ;
Garanin, DA .
EUROPEAN PHYSICAL JOURNAL B, 2000, 16 (03) :435-438