A new approach for embedding causal sets into Minkowski space

被引:2
作者
Liu, He [1 ,3 ]
Reid, David D. [2 ]
机构
[1] Univ Chicago, Div Phys Sci, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[3] Univ Mississippi, Dept Phys & Astron, Oxford, MS 38677 USA
关键词
causal sets; discrete spacetime; Minkowski space; quantun gravity; embedding;
D O I
10.1088/1361-6382/aac082
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper reports on recent work toward an approach for embedding causal sets into two-dimensional Minkowski space. The main new feature of the present scheme is its use of the spacelike distance measure to construct an ordering of causal set elements within anti-chains of a causal set as an aid to the embedding procedure.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Inference of boundaries in causal sets
    Cunningham, William J.
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (09)
  • [32] Boundary terms for causal sets
    Buck, Michel
    Dowker, Fay
    Jubb, Ian
    Surya, Sumati
    CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (20)
  • [33] Introduction to causal sets and their phenomenology
    Dowker, Fay
    GENERAL RELATIVITY AND GRAVITATION, 2013, 45 (09) : 1651 - 1667
  • [34] Introduction to causal sets and their phenomenology
    Fay Dowker
    General Relativity and Gravitation, 2013, 45 : 1651 - 1667
  • [35] A NEW CHARACTERIZATION OF CURVES IN MINKOWSKI 4-SPACE E14
    Kisi, Ilim
    Ozturk, Gunay
    Arslan, Kadri
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (01): : 187 - 199
  • [36] A New Representation of Canal Surfaces with Split Quaternions in Minkowski 3-Space
    Kocakusakli, Erdem
    Tuncer, O. Ogulcan
    Gok, Ismail
    Yayli, Yusuf
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 1387 - 1409
  • [37] A New Representation of Canal Surfaces with Split Quaternions in Minkowski 3-Space
    Erdem Kocakuşaklı
    O. Oğulcan Tuncer
    İsmail Gök
    Yusuf Yaylı
    Advances in Applied Clifford Algebras, 2017, 27 : 1387 - 1409
  • [38] Majorana–Oppenheimer Approach to Maxwell Electrodynamics. Part I. Minkowski Space
    V. M. Red’kov
    N. G. Tokarevskaya
    George J. Spix
    Advances in Applied Clifford Algebras, 2012, 22 : 1129 - 1149
  • [39] Generalized Minkowski space with changing shape
    Á. G. Horváth
    Aequationes mathematicae, 2014, 87 : 337 - 377
  • [40] Skip The Question You Don't Know: An Embedding Space Approach
    Chen, Kaiyuan
    Zhao, Jinghao
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,