WELL-POSEDNESS FOR DEGENERATE SCHRODINGER EQUATIONS

被引:17
作者
Cicognani, Massimo [1 ]
Reissig, Michael [2 ]
机构
[1] Univ Bologna, Dipartimento Matemat, I-40126 Bologna, Italy
[2] Tech Univ Bergakad Freiberg, Fak Math & Informat, Inst Angew Anal, D-09596 Freiberg, Germany
关键词
Schrodinger equations; time-depending Hamiltonian; Cauchy problem; Levi conditions; Gevrey well-posedness; CAUCHY-PROBLEM;
D O I
10.3934/eect.2014.3.15
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the initial value problem for Schrodinger type equations 1/i partial derivative(t)u - a(t) Delta(x) u + Sigma(n)(j=1) b(j) (t,x) partial derivative(xj) u = 0 with a(t) vanishing of finite order at t = 0 proving the well-posedness in Sobolev and Gevrey spaces according to the behavior of the real parts nb(j) (t, x) as t -> 0 and vertical bar x vertical bar -> infinity. Moreover, we discuss the application of our approach to the case of a general degeneracy.
引用
收藏
页码:15 / 33
页数:19
相关论文
共 15 条
[1]  
Ascanelli A., 2009, REND SEMIN MAT U POL, V67, P151
[2]   The global Cauchy problem for a vibrating beam equation [J].
Ascanelli, Alessia ;
Cicognani, Massimo ;
Colombini, Ferruccio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (05) :1440-1451
[3]  
Cicognani M, 2013, J PSEUDO-DIFFER OPER, V4, P63, DOI 10.1007/s11868-013-0062-4
[4]  
Cicognani M, 2004, DIFFER INTEGRAL EQU, V17, P1079
[5]  
DOI S, 1994, J MATH KYOTO U, V34, P319, DOI 10.1215/kjm/1250519013
[6]  
Doi S, 1996, COMMUN PART DIFF EQ, V21, P163
[7]   Necessary conditions for the well-posedness of Schrodinger type equations in Gevrey spaces [J].
Dreher, M .
BULLETIN DES SCIENCES MATHEMATIQUES, 2003, 127 (06) :485-503
[8]  
ICHINOSE W, 1984, OSAKA J MATH, V21, P565
[9]   ON THE CAUCHY-PROBLEM FOR SCHRODINGER TYPE EQUATIONS AND FOURIER INTEGRAL-OPERATORS [J].
ICHINOSE, W .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1993, 33 (03) :583-620
[10]   ON A NECESSARY CONDITION FOR L(2) WELL-POSEDNESS OF THE CAUCHY-PROBLEM FOR SOME SCHRODINGER TYPE EQUATIONS WITH A POTENTIAL TERM [J].
ICHINOSE, W .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1993, 33 (03) :647-663