Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications

被引:13
作者
Slysz, W.
Grzecki, M. W.
Bar, J.
Grabiec, P.
Gorska, M.
Zwiller, V.
Latta, C.
Boehi, P.
Pearlman, A. J.
Cross, A. S.
Pan, D.
Kitaygorsky, J.
Komissarov, I.
Verevkin, A.
Milostnaya, I.
Korneev, A.
Minayeva, O.
Chulkova, G.
Smirnov, K.
Voronov, B.
Gol'tsman, G. N.
Sobolewski, Roman
机构
[1] Univ Rochester, Dept Elect & Comp Engn, Rochester, NY 14627 USA
[2] Univ Rochester, Laser Energet Lab, Rochester, NY 14627 USA
[3] Inst Electr Mat Technol, PL-02668 Warsaw, Poland
[4] Swiss Fed Inst Technol, Quantum Photon, CH-8093 Zurich, Switzerland
[5] Delft Univ Technol, Kavli Inst Nanosci Delft, NL-2600 GA Delft, Netherlands
[6] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
[7] Moscow State Pedag Univ, Dept Phys, Moscow 119435, Russia
关键词
D O I
10.1080/09500340600779496
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a novel, two-channel, single photon receiver based on two fibre-coupled, NbN, superconducting, single photon detectors (SSPDs). The SSPDs are nanostructured superconducting meanders and are known for ultrafast and efficient detection of visible-to-infrared photons. Coupling between the NbN detector and optical fibre was achieved using a micromechanical photoresist ring placed directly over the SSPD, holding the fibre in place. With this arrangement, we obtained coupling efficiencies up to similar to 30%. Our experimental results showed that the best receiver had a near-infrared system quantum efficiency of 0.33% at 4.2K. The quantum efficiency increased exponentially with the photon energy increase, reaching a few percent level for visible-light photons. The photoresponse pulses of our devices were limited by the meander high kinetic inductance and had the rise and fall times of approximately 250 ps and 5 ns, respectively. The receiver's timing jitter was in the 37 to 58 ps range, approximately 2 to 3 times larger than in our older free-space-coupled SSPDs. We stipulate that this timing jitter is in part due to optical fibre properties. Besides quantum communications, the two-detector arrangement should also find applications in quantum correlation experiments.
引用
收藏
页码:315 / 326
页数:12
相关论文
共 19 条
[1]   Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors [J].
Cabrera, B ;
Clarke, RM ;
Colling, P ;
Miller, AJ ;
Nam, S ;
Romani, RW .
APPLIED PHYSICS LETTERS, 1998, 73 (06) :735-737
[2]   Fabrication, of nanostructured superconducting single-photon detectors [J].
Gol'tsman, GN ;
Smirnov, K ;
Kouminov, P ;
Voronov, B ;
Kaurova, N ;
Drakinsky, V ;
Zhang, J ;
Verevkin, A ;
Sobolewski, R .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2003, 13 (02) :192-195
[3]   Picosecond superconducting single-photon optical detector [J].
Gol'tsman, GN ;
Okunev, O ;
Chulkova, G ;
Lipatov, A ;
Semenov, A ;
Smirnov, K ;
Voronov, B ;
Dzardanov, A ;
Williams, C ;
Sobolewski, R .
APPLIED PHYSICS LETTERS, 2001, 79 (06) :705-707
[4]  
GRABIEC P, 2004, Patent No. 067391
[5]   Low-frequency phase locking in high-inductance superconducting nanowires [J].
Hadfield, RH ;
Miller, AJ ;
Nam, SW ;
Kautz, RL ;
Schwall, RE .
APPLIED PHYSICS LETTERS, 2005, 87 (20) :1-3
[6]   Single photon source characterization with a superconducting single photon detector [J].
Hadfield, RH ;
Stevens, MJ ;
Gruber, SS ;
Miller, AJ ;
Schwall, RE ;
Mirin, RP ;
Nam, SW .
OPTICS EXPRESS, 2005, 13 (26) :10846-10853
[7]   InGaAs-on-Si single photon avalanche photodetectors [J].
Kang, Y ;
Lo, YH ;
Bitter, M ;
Kristjansson, S ;
Pan, Z ;
Pauchard, A .
APPLIED PHYSICS LETTERS, 2004, 85 (10) :1668-1670
[8]   Kinetic-inductance-limited reset time of superconducting nanowire photon counters [J].
Kerman, AJ ;
Dauler, EA ;
Keicher, WE ;
Yang, JKW ;
Berggren, KK ;
Gol'tsman, G ;
Voronov, B .
APPLIED PHYSICS LETTERS, 2006, 88 (11)
[9]   Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors [J].
Korneev, A ;
Kouminov, P ;
Matvienko, V ;
Chulkova, G ;
Smirnov, K ;
Voronov, B ;
Gol'tsman, GN ;
Currie, M ;
Lo, W ;
Wilsher, K ;
Zhang, J ;
Slysz, W ;
Pearlman, A ;
Verevkin, A ;
Sobolewski, R .
APPLIED PHYSICS LETTERS, 2004, 84 (26) :5338-5340
[10]   Long distance free space quantum cryptography [J].
Kurtsiefer, C ;
Zarda, P ;
Halder, M ;
Gorman, PM ;
Tapster, PR ;
Rarity, JG ;
Weinfurter, H .
QUANTUM OPTICS IN COMPUTING AND COMMUNICATIONS, 2002, 4917 :25-31