Newton polyhedra and power transformations

被引:3
|
作者
Bruno, AD [1 ]
机构
[1] MV Keldysh Appl Math Inst, Moscow 125047, Russia
基金
俄罗斯基础研究基金会;
关键词
algebraic equations; differential equations; asymptotics; first approximation; singular perturbation;
D O I
10.1016/S0378-4754(97)00121-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We give a simple presentation of an algorithm of selecting asymptotical first approximations of equations (algebraic and ordinary differential and partial differential). Here the first approximation of a solution of the initial equation is a solution of the corresponding first approximation of the equation. The algorithm is based on the geometry of power exponents including the Newton polyhedron. The geometry admits transformations induced by power transformations of coordinates. We give also a survey of applications of the algorithms in problems of Celestial Mechanics and Hydrodynamics. (C) 1998 IMACS/Elsevier Science B.V.
引用
收藏
页码:429 / 443
页数:15
相关论文
共 50 条
  • [21] Newton Method for Solving the Multi-Variable Fuzzy Optimization Problem
    Pirzada, U. M.
    Pathak, V. D.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 156 (03) : 867 - 881
  • [22] CONTINUOUS NEWTON-LIKE METHODS FEATURING INERTIA AND VARIABLE MASS
    Castera, Camille
    Attouch, Hedy
    Fadili, Jalal
    Ochs, Peter
    SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (01) : 251 - 277
  • [23] Monodromy of a class of analytic generalized nilpotent systems through their Newton diagram
    Algaba, A.
    Garcia, C.
    Reyes, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 287 : 78 - 87
  • [24] CONTROLLED CHAOS OF A FRACTAL-FRACTIONAL NEWTON-LEIPNIK SYSTEM
    Alsulami, Amer
    Alharb, Rasmiyah A.
    Albogami, Tahani M.
    Eljaneid, Nida H. E.
    Adam, Haroon D. S.
    Saber, Sayed
    THERMAL SCIENCE, 2024, 28 (6B): : 5153 - 5160
  • [25] OPTIMAL CONTROL OF THE INHOMOGENEOUS RELATIVISTIC MAXWELL-NEWTON-LORENTZ EQUATIONS
    Meyer, C.
    Schnepp, S. M.
    Thoma, O.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (05) : 2490 - 2525
  • [26] An improved approximate Newton method for implicit Runge-Kutta formulas
    Xie, Dexuan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (17) : 5249 - 5258
  • [27] Complex SUSY Transformations and the Painleve IV Equation
    Bermudez, David
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8
  • [28] Backlund transformations for a discrete second Painleve hierarchy
    Pickering, A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (01)
  • [29] Backlund Transformations for Liouville Equations with Exponential Nonlinearity
    Redkina, Tatyana V.
    Zakinyan, Robert G.
    Zakinyan, Arthur R.
    Novikova, Olga V.
    AXIOMS, 2021, 10 (04)
  • [30] Backlund Transformations for First and Second Painleve Hierarchies
    Sakka, Ayman Hashem
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5