Sobolev spaces for the weighted partial derivative-Neumann operator

被引:1
作者
Haslinger, Friedrich [1 ]
机构
[1] Univ Vienna, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Weighted partial derivative-Neumann operator; Sobolev spaces; compactness;
D O I
10.1142/S0129167X17400079
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss compactness of the partial derivative-Neumann operator in the setting of weighted L-2-spaces on C-n. In addition we describe an approach to obtain the compactness estimates for the partial derivative-Neumann operator. For this purpose we have to define appropriate weighted Sobolev spaces and prove an appropriate Rellich-Kondrachov lemma.
引用
收藏
页数:12
相关论文
共 9 条
[1]  
Bolley P., 1989, SEMINAIRE EQUATION D, V1, P1
[2]  
Davies E. B., 1995, CAMBRIDGE STUDIES AD, V42
[3]  
HASLINGER F, 2014, GRUYTER EXPOSITIO MA, V59
[4]   Compactness of the solution operator to partial derivative in weighted L2-spaces [J].
Haslinger, Friedrich ;
Helffer, Bernard .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 243 (02) :679-697
[5]   On the spectral properties of Witten-Laplacians, their range projections and Brascamp-Lieb's inequality [J].
Johnsen, J .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 36 (03) :288-324
[6]   GENERALIZED SCHMOLUCHOWSKI EQUATION [J].
KNEIB, JM ;
MIGNOT, F .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1994, 167 :257-298
[7]   NON-COERCIVE BOUNDARY VALUE PROBLEMS [J].
KOHN, JJ ;
NIRENBER.L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1965, 18 (03) :443-&
[8]  
Straube E., 2010, ESI LECTURES MATH PH
[9]  
[No title captured]