SINGULAR DISCONTINUOUS HAMILTONIAN SYSTEMS

被引:1
作者
Allahverdiev, Bilender P. [1 ]
Tuna, Huseyin [2 ]
机构
[1] Suleyman Demirel Univ, Dept Math, TR-32260 Isparta, Turkey
[2] Mehmet Akif Ersoy Univ, Dept Math, TR-15030 Burdur, Turkey
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2022年 / 12卷 / 04期
关键词
Hamiltonian system; singular point; transmission conditions; Titchmar-sh-Weyl theory; BOUNDARY-VALUE-PROBLEMS; PERIODIC-SOLUTIONS; M(LAMBDA) THEORY; CONTROLLABILITY; PENDULUM; POINT;
D O I
10.11948/20210145
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a discontinuous linear Hamiltonian system in the singular case. For these systems, the Titchmarsh-Weyl theory is established.
引用
收藏
页码:1386 / 1402
页数:17
相关论文
共 34 条
[1]  
Ala V., 2020, J ADV MATH STUD, V13, P81
[2]  
Allahverdiev B. P., 2022, UFA MATH J
[3]   Discontinuous Linear Hamiltonian Systems [J].
Allahverdiev, Bilender P. ;
Tuna, Huseyin .
FILOMAT, 2022, 36 (03) :813-827
[4]  
Atkinson F.V., 1964, Discrete and continuous boundary problems
[5]   Generalized Fourier Series as Green's Function Expansion for Multi-interval Sturm-Liouville Systems [J].
Aydemir, K. ;
Mukhtarov, O. Sh. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (03)
[6]  
Bainov D. D., 1993, IMPULSIVE DIFFERENTI
[7]   On the characteristic values of the real component of a dissipative boundary value transmission problem [J].
Bairamov, Elgiz ;
Ugurlu, Ekin .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (19) :9657-9663
[8]   Two singular point linear Hamiltonian systems with an interface condition [J].
Behncke, Horst ;
Hinton, Don .
MATHEMATISCHE NACHRICHTEN, 2010, 283 (03) :365-378
[9]  
Cetinkaya FA, 2017, AZERBAIJAN J MATH, V7, P130
[10]   A note on controllability of impulsive systems [J].
George, RK ;
Nandakumaran, AK ;
Arapostathis, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 241 (02) :276-283