Extremal solutions of strongly nonlinear discontinuous second-order equations with nonlinear functional boundary conditions

被引:43
作者
Cabada, A [1 ]
Pouso, RL [1 ]
机构
[1] Univ Santiago de Compostela, Fac Matemat, Dept Anal Matemat, Santiago De Compostela 15706, Spain
关键词
upper and lower solutions; phi-Laplacian; discontinuous ordinary differential equations; monotone method;
D O I
10.1016/S0362-546X(99)00158-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The φ-Laplacian problem with nonlinear functional boundary conditions and discontinuities in the u' argument is addressed. Results on existence of extremal solutions and on the application of the monotone method over ordinary differential equations are discussed.
引用
收藏
页码:1377 / 1396
页数:20
相关论文
共 23 条
[1]  
Adje A, 1990, B SOC MATH BEL B, V42, P347
[2]  
[Anonymous], 1993, ANN POL MATH, DOI DOI 10.4064/AP-58-3-221-235
[3]  
Appell J, 1990, CAMBRIDGE TRACTS MAT, V95
[4]  
Bernfeld S., 1974, INTRO NONLINEAR BOUN
[5]  
BREZIS H, 1983, ANN FONCTIONELLE
[6]   Existence results for the problem (φ(u′))′=f(t,u,u′) with nonlinear boundary conditions [J].
Cabada, A ;
Pouso, RL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 35 (02) :221-231
[7]   Existence result for the problem (φ(u′))′=f(t,u,u′) with periodic and Neumann boundary conditions. [J].
Cabada, A ;
Pouso, RL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (03) :1733-1742
[8]  
CABADA A, 1994, DIFF EQUAT, V2, P65
[9]  
Cherpion M., 1999, DIFFERENTIAL INTEGRA, V12, P309
[10]   PAIRS OF POSITIVE SOLUTIONS FOR THE ONE-DIMENSIONAL P-LAPLACIAN [J].
DECOSTER, C .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (05) :669-681