Sharp eigenvalue estimates for rank one perturbations of nonnegative operators in Krein spaces

被引:6
作者
Behrndt, Jussi [1 ]
Leben, Leslie [2 ]
Martinez Peria, Francisco [3 ,4 ]
Moews, Roland [2 ]
Trunk, Carsten [2 ]
机构
[1] Graz Univ Technol, Inst Numer Math, Steyrergasse 30, A-8010 Graz, Austria
[2] Tech Univ Ilmenau, Inst Math, Postfach 100565, D-98684 Ilmenau, Germany
[3] Univ Nacl La Plata, Dept Matemat, Fac Ciencias Exactas, CC 172, RA-1900 La Plata, Buenos Aires, Argentina
[4] Consejo Nacl Invest Cient & Tecn, Inst Argentino Matemat Alberto P Calderon, Saavedra 15, RA-1083 Buenos Aires, DF, Argentina
基金
奥地利科学基金会;
关键词
Selfadjoint operator; Krein space; Rank one perturbation; Eigenvalue estimates; Indefinite Sturm-Liouville operator; GENERALIZED NEVANLINNA FUNCTIONS; SELF-ADJOINT EXTENSIONS; LINEAR RELATION; DEFECT ONE; FACTORIZATION; SPECTRUM;
D O I
10.1016/j.jmaa.2016.03.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A and B be selfadjoint operators in a Krein space and assume that the resolvent difference of A and B is of rank one. In the case that A is nonnegative and I is an open interval such that sigma(A) boolean AND I consists of isolated eigenvalues we prove sharp estimates on the number and multiplicities of eigenvalues of B in I. The general result is illustrated with eigenvalue estimates for singular indefinite Sturm-Liouville problems. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:864 / 895
页数:32
相关论文
共 54 条
  • [21] Singular perturbations of self-adjoint operators
    Derkach, V
    Hassi, S
    De Snoo, H
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2003, 6 (04) : 349 - 384
  • [22] Rank one perturbations in a Pontryagin space with one negative square
    Derkach, V
    Hassi, S
    de Snoo, H
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 188 (02) : 317 - 349
  • [23] Derkach V., 1999, Methods Funct. Anal. Topology, V5, P65
  • [24] EIGENVALUES AND POLE FUNCTIONS OF HAMILTONIAN-SYSTEMS WITH EIGENVALUE DEPENDING BOUNDARY-CONDITIONS
    DIJKSMA, A
    LANGER, H
    DESNOO, H
    [J]. MATHEMATISCHE NACHRICHTEN, 1993, 161 : 107 - 154
  • [25] High order singular rank one perturbations of a positive operator
    Dijksma, A
    Kurasov, P
    Shondin, Y
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 53 (02) : 209 - 245
  • [26] Rank one perturbations at infinite coupling in Pontryagin spaces
    Dijksma, A
    Langer, H
    Shondin, Y
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 209 (01) : 206 - 246
  • [27] A factorization result for generalized Nevanlinna functions of the class Nk
    Dijksma, A
    Langer, H
    Luger, A
    Shondin, Y
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 36 (01) : 121 - 125
  • [28] RANK-ONE PERTURBATIONS AT INFINITE COUPLING
    GESZTESY, F
    SIMON, B
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 128 (01) : 245 - 252
  • [29] Gohberg I.C., 1969, Transl. Mathematical Monographs, V18
  • [30] Hassi S., 1998, KREIN LANGER METHOD, V106, P201